Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oncogene ; 37(32): 4475-4488, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29743589

RESUMEN

Genetic alterations in the fibroblast growth factor receptors (FGFRs) have been described in multiple solid tumours including bladder cancer, head and neck and lung squamous cell carcinoma (SqCC). However, recent clinical trials showed limited efficacy of FGFR-targeted therapy in lung SqCC, suggesting combination therapy may be necessary to improve patient outcomes. Here we demonstrate that FGFR therapy primes SqCC for cell death by increasing the expression of the pro-apoptotic protein BIM. We therefore hypothesised that combining BH3-mimetics, potent inhibitors of pro-survival proteins, with FGFR-targeted therapy may enhance the killing of SqCC cells. Using patient-derived xenografts and specific inhibitors of BCL-2, BCL-XL, and MCL-1, we identified a greater reliance of lung SqCC cells on BCL-XL and MCL-1 compared to BCL-2 for survival. However, neither BCL-XL nor MCL-1 inhibitors alone provided a survival benefit in combination FGFR therapy in vivo. Only triple BCL-XL, MCL-1, and FGFR inhibition resulted in tumour volume regression and prolonged survival in vivo, demonstrating the ability of BCL-XL and MCL-1 proteins to compensate for each other in lung SqCC. Our work therefore provides a rationale for the inhibition of MCL-1, BCL-XL, and FGFR1 to maximize therapeutic response in FGFR1-expressing lung SqCC.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Proteína bcl-X/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2/metabolismo , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Quimioterapia Combinada/métodos , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
2.
Respir Res ; 16: 67, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-26048572

RESUMEN

BACKGROUND: The lung is constantly exposed to environmental challenges and must rapidly respond to external insults. Mechanisms involved in the repair of the damaged lung involve expansion of different epithelial cells to repopulate the injured cellular compartment. However, factors regulating cell proliferation following lung injury remain poorly understood. Here we studied the role of the transcriptional regulator Lmo4 during lung development, in the regulation of adult lung epithelial cell proliferation following lung damage and in the context of oncogenic transformation. METHODS: To study the role of Lmo4 in embryonic lung development, lung repair and tumorigenesis, we used conditional knock-out mice to delete Lmo4 in lung epithelial cells from the first stages of lung development. The role of Lmo4 in lung repair was evaluated using two experimental models of lung damage involving chemical and viral injury. The role of Lmo4 in lung tumorigenesis was measured using a mouse model of lung adenocarcinoma in which the oncogenic K-Ras protein has been knocked into the K-Ras locus. Overall survival difference between genotypes was tested by log rank test. Difference between means was tested using one-way ANOVA after assuring that assumptions of normality and equality of variance were satisfied. RESULTS: We found that Lmo4 was not required for normal embryonic lung morphogenesis. In the adult lung, loss of Lmo4 reduced epithelial cell proliferation and delayed repair of the lung following naphthalene or flu-mediated injury, suggesting that Lmo4 participates in the regulation of epithelial cell expansion in response to cellular damage. In the context of K-Ras(G12D)-driven lung tumor formation, Lmo4 loss did not alter overall survival but delayed initiation of lung hyperplasia in K-Ras(G12D) mice sensitized by naphthalene injury. Finally, we evaluated the expression of LMO4 in tissue microarrays of early stage non-small cell lung cancer and observed that LMO4 is more highly expressed in lung squamous cell carcinoma compared to adenocarcinoma. CONCLUSIONS: Together these results show that the transcriptional regulator Lmo4 participates in the regulation of lung epithelial cell proliferation in the context of injury and oncogenic transformation but that Lmo4 depletion is not sufficient to prevent lung repair or tumour formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proliferación Celular/fisiología , Progresión de la Enfermedad , Proteínas con Dominio LIM/deficiencia , Neoplasias Pulmonares/metabolismo , Pulmón/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Mucosa Respiratoria/patología
3.
Development ; 142(8): 1458-69, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25790853

RESUMEN

Epigenetic mechanisms involved in the establishment of lung epithelial cell lineage identities during development are largely unknown. Here, we explored the role of the histone methyltransferase Ezh2 during lung lineage determination. Loss of Ezh2 in the lung epithelium leads to defective lung formation and perinatal mortality. We show that Ezh2 is crucial for airway lineage specification and alveolarization. Using optical projection tomography imaging, we found that branching morphogenesis is affected in Ezh2 conditional knockout mice and the remaining bronchioles are abnormal, lacking terminally differentiated secretory club cells. Remarkably, RNA-seq analysis revealed the upregulation of basal genes in Ezh2-deficient epithelium. Three-dimensional imaging for keratin 5 further showed the unexpected presence of a layer of basal cells from the proximal airways to the distal bronchioles in E16.5 embryos. ChIP-seq analysis indicated the presence of Ezh2-mediated repressive marks on the genomic loci of some but not all basal genes, suggesting an indirect mechanism of action of Ezh2. We found that loss of Ezh2 de-represses insulin-like growth factor 1 (Igf1) expression and that modulation of IGF1 signaling ex vivo in wild-type lungs could induce basal cell differentiation. Altogether, our work reveals an unexpected role for Ezh2 in controlling basal cell fate determination in the embryonic lung endoderm, mediated in part by repression of Igf1 expression.


Asunto(s)
Diferenciación Celular/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Pulmón/citología , Pulmón/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Diferenciación Celular/genética , Inmunoprecipitación de Cromatina , Proteína Potenciadora del Homólogo Zeste 2 , Citometría de Flujo , Factor I del Crecimiento Similar a la Insulina/genética , Queratina-5/genética , Queratina-5/metabolismo , Pulmón/embriología , Ratones , Complejo Represivo Polycomb 2/genética , Reacción en Cadena de la Polimerasa
4.
Retrovirology ; 7: 27, 2010 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-20367881

RESUMEN

BACKGROUND: Following entry, uncoating, and reverse transcription, a number of cellular proteins become associated with the human immunodeficiency virus type 1 (HIV-1) pre-integration complex (PIC). With the goal of obtaining reagents for the analysis of the HIV-1 PIC composition and localisation, we have constructed functional integrase (IN) and matrix (MA) proteins that can be biotinylated during virus production and captured using streptavidin-coated beads. RESULTS: Although the labelled C-terminus allows for the sensitive detection of virion-associated IN, it becomes inaccessible in the presence of cellular proteins. This masking is not dependent on the nature of the tag and does not occur with the tagged MA. It was not observed either with an IN mutant unable to interact with LEDGF/p75, or when LEDGF/p75 was depleted from cells. CONCLUSION: Our observation suggests that a structural rearrangement or oligomerization of the IN protein occurs during the early steps of infection and that this process is related to the presence of LEDGF/p75.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Integrasa de VIH/metabolismo , VIH-1/fisiología , Factores de Transcripción/metabolismo , Biotina/metabolismo , Línea Celular , Integrasa de VIH/química , Humanos , Modelos Biológicos , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...