Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13344, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858477

RESUMEN

Cardiotrophin-like cytokine factor 1 (CLCF1) is an IL-6 family cytokine with neurotrophic and immuno-modulating functions. CLCF1 mRNA has been detected in primary and secondary lymphoid organs, and up-regulation of CLCF1 mRNA levels has been associated with the T helper (Th) 17 polarization. However, information regarding CLCF1 expression by immune cells at the protein level remains scarce. We have developed a methodology that uses a monoclonal antibody (mAb) directed against CLCF1 for the detection of human and mouse CLCF1 by flow cytometry. We have successfully detected CLCF1 protein expression in cells from the mouse pro-B cell line Ba/F3 that were transduced with CLCF1 cDNA. Interestingly, we found that the anti-CLCF1 mAb inhibits CLCF1 biological activity in vitro by binding to an epitope that encompasses site III of the cytokine. Moreover, we have detected CLCF1 expression in mouse splenic T cells, as well as in vitro differentiated Th1 cells. The specificity of the fluorescence signal was demonstrated using Clcf1-deficient lymphocytes generated using a conditional knock-out mouse model. The detection of CLCF1 protein by flow cytometry will be a valuable tool to study CLCF1 expression during normal and pathological immune responses.


Asunto(s)
Anticuerpos Monoclonales , Citocinas , Citometría de Flujo , Animales , Citometría de Flujo/métodos , Ratones , Humanos , Anticuerpos Monoclonales/inmunología , Citocinas/metabolismo , Ratones Noqueados , Línea Celular , Células TH1/inmunología , Células TH1/metabolismo
2.
Immunol Cell Biol ; 102(6): 429-431, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38690663

RESUMEN

In this article for the Highlights of 2023 Series, we discuss recent research on unconventional T cells with a focus on gamma delta T cell development and cancer cell targeting, as well as the contributions of MAIT cells to wound repair.


Asunto(s)
Neoplasias , Animales , Humanos , Diferenciación Celular/inmunología , Movimiento Celular/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo , Neoplasias/inmunología , Linfocitos T/inmunología , Cicatrización de Heridas/inmunología
3.
Oncogene ; 40(2): 452-464, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33177649

RESUMEN

Interleukin-17 receptor D (IL-17RD), also known as similar expression to Fgf genes (SEF), is proposed to act as a signaling hub that negatively regulates mitogenic signaling pathways, like the ERK1/2 MAP kinase pathway, and innate immune signaling. The expression of IL-17RD is downregulated in certain solid tumors, which has led to the hypothesis that it may exert tumor suppressor functions. However, the role of IL-17RD in tumor biology remains to be studied in vivo. Here, we show that genetic disruption of Il17rd leads to the increased formation of spontaneous tumors in multiple tissues of aging mice. Loss of IL-17RD also promotes tumor development in a model of colitis-associated colorectal cancer, associated with an exacerbated inflammatory response. Colon tumors from IL-17RD-deficient mice are characterized by a strong enrichment in inflammation-related gene signatures, elevated expression of pro-inflammatory tumorigenic cytokines, such as IL-17A and IL-6, and increased STAT3 tyrosine phosphorylation. We further show that RNAi depletion of IL-17RD enhances Toll-like receptor and IL-17A signaling in colon adenocarcinoma cells. No change in the proliferation of normal or tumor intestinal epithelial cells was observed upon genetic inactivation of IL-17RD. Our findings establish IL-17RD as a tumor suppressor in mice and suggest that the protein exerts its function mainly by limiting the extent and duration of inflammation.


Asunto(s)
Carcinogénesis/patología , Colitis/complicaciones , Neoplasias del Colon/patología , Inflamación/complicaciones , Receptores de Interleucina/fisiología , Animales , Carcinogénesis/metabolismo , Proliferación Celular , Neoplasias del Colon/etiología , Neoplasias del Colon/metabolismo , Citocinas/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Factor de Transcripción STAT3/metabolismo , Transcriptoma , Tirosina/metabolismo
4.
Front Immunol ; 10: 2133, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552057

RESUMEN

Cardiotrophin-like cytokine factor 1 (CLCF1) is secreted as a complex with the cytokine receptor-like factor 1 (CRLF1). Syndromes caused by mutations in the genes encoding CLCF1 or CRLF1 suggest an important role for CLCF1 in the development and regulation of the immune system. In mice, CLCF1 induces B-cell expansion, enhances humoral responses and triggers autoimmunity. Interestingly, inactivation of CRLF1, which impedes CLCF1 secretion, leads to a marked reduction in the number of bone marrow (BM) progenitor cells, while mice heterozygous for CLCF1 display a significant decrease in their circulating leukocytes. We therefore hypothesized that CLCF1 might be implicated in the regulation of hematopoiesis. To test this hypothesis, murine hematopoietic progenitor cells defined as Lin-Sca1+c-kit+ (LSK) were treated in vitro with ascending doses of CLCF1. The frequency and counts of LSK cells were significantly increased in the presence of CLCF1, which may be mediated by several CLCF1-induced soluble factors including IL-6, G-CSF, IL-1ß, IL-10, and VEGF. CLCF1 administration to non-diseased C57BL/6 mice resulted in a pronounced increase in circulating myeloid cells, which was concomitant with augmented LSK and myeloid cell counts in the BM. Likewise, CLCF1 administration to mice following sub-lethal irradiation or congeneic BM transplantation (BMT) resulted in accelerated LSK recovery along with a sustained increase in BM-derived CD11b+ cells. Altogether, our observations establish an important and unforeseen role for CLCF1 in regulating hematopoiesis with a bias toward myeloid cell differentiation.


Asunto(s)
Hematopoyesis , Células Progenitoras Mieloides/fisiología , Receptores de Citocinas/genética , Animales , Femenino , Hematopoyesis/efectos de los fármacos , Ratones Endogámicos C57BL , Células Progenitoras Mieloides/efectos de los fármacos , Proteínas Recombinantes/farmacología
5.
J Biol Chem ; 294(32): 11952-11959, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31248987

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into adipocytes, chondrocytes, or osteocytes. MSCs secrete an array of cytokines and express the LIFRß (leukemia inhibitory factor receptor) chain on their surface. Mutations in the gene coding for LIFRß lead to a syndrome with altered bone metabolism. LIFRß is one of the signaling receptor chains for cardiotrophin-like cytokine (CLCF1), a neurotrophic factor known to modulate B and myeloid cell functions. We investigated its effect on MSCs induced to differentiate into osteocytes in vitro Our results indicate that CLCF1 binds mouse MSCs, triggers STAT1 and -3 phosphorylation, inhibits the up-regulation of master genes involved in the control of osteogenesis, and markedly prevents osteoblast generation and mineralization. This suggests that CLCF1 could be a target for therapeutic intervention with agents such as cytokine traps or blocking mAbs in bone diseases such as osteoporosis.


Asunto(s)
Diferenciación Celular , Citocinas/metabolismo , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Animales , Células de la Médula Ósea/citología , Células Cultivadas , Citocinas/genética , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutagénesis , Osteoblastos/metabolismo , Osteogénesis , Fosforilación , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Regulación hacia Arriba
6.
J Immunol ; 201(8): 2462-2471, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30209193

RESUMEN

CLCF1 is a neurotrophic and B cell-stimulating factor belonging to the IL-6 family. Mutations in the gene coding for CLCF1 or its secretion partner CRLF1 lead to the development of severe phenotypes, suggesting important nonredundant roles in development, metabolism, and immunity. Although CLCF1 was shown to promote the proliferation of the myeloid cell line M1, its roles on myeloid activation remain underinvestigated. We characterized the effects of CLCF1 on myeloid cells with a focus on monocyte-macrophage and macrophage-foam cell differentiations. CLCF1 injections in mice resulted in a significant increase in CD11b+ circulating cells, including proinflammatory monocytes. Furthermore, CLCF1 activated STAT3 phosphorylation in bone marrow CD11b+ cells and in bone marrow-derived macrophages (BMDM). BMDM stimulated with CLCF1 produced a large array of proinflammatory factors comprising IL-6, IL-9, G-CSF, GM-CSF, IL-1ß, IL-12, CCL5, and CX3CL1. The pattern of cytokines and chemokines released by CLCF1-treated BMDM led us to investigate the role of CLCF1 in foam cell formation. When pretreated with CLCF1, BMDM presented a marked SR-A1 upregulation, an increase in acetylated-low-density lipoprotein uptake, and an elevated triglyceride accumulation. CLCF1-induced SR-A1 upregulation, triglyceride accumulation, and acetylated-low-density lipoprotein uptake could be prevented using ruxolitinib, a JAK inhibitor, indicating that the effects of the cytokine on myeloid cells result from activation of the canonical JAK/STAT signaling pathway. Our data reveal novel biological roles for CLCF1 in the control of myeloid function and identify this cytokine as a strong inducer of macrophage-foam cell transition, thus bringing forward a new potential therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Células Espumosas/fisiología , Macrófagos/fisiología , Animales , Aterosclerosis/patología , Células Cultivadas , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Quinasas Janus/metabolismo , Ratones , Ratones Endogámicos C57BL , Mielopoyesis , Factores de Transcripción STAT , Receptores Depuradores de Clase A/metabolismo , Transducción de Señal
7.
Sci Rep ; 8(1): 3990, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29507344

RESUMEN

The cytokines CLCF1 and CNTF are ligands for the CNTF receptor and the apolipoprotein E (ApoE) receptor sortilin. Both share structural similarities with the N-terminal domain of ApoE, known to bind CNTF. We therefore evaluated whether ApoE or ApoE-containing lipoproteins interact with CLCF1 and regulate its activity. We observed that CLCF1 forms complexes with the three major isoforms of ApoE in co-immunoprecipitation and proximity assays. FPLC analysis of mouse and human sera mixed with CLCF1 revealed that CLCF1 co-purifies with plasma lipoproteins. Studies with sera from ApoE-/- mice indicate that ApoE is not required for CLCF1-lipoprotein interactions. VLDL- and LDL-CLCF1 binding was confirmed using proximity and ligand blots assays. CLCF1-induced STAT3 phosphorylation was significantly reduced when the cytokine was complexed with VLDL. Physiological relevance of our findings was asserted in a mouse model of oxygen-induced retinopathy, where the beneficial anti-angiogenic properties of CLCF1 were abrogated when co-administrated with VLDL, indicating, that CLCF1 binds purified lipoproteins or lipoproteins in physiological fluids such as serum and behave as a "lipocytokine". Albeit it is clear that lipoproteins modulate CLCF1 activity, it remains to be determined whether lipoprotein binding directly contributes to its neurotrophic function and its roles in metabolic regulation.


Asunto(s)
Citocinas/metabolismo , Lipoproteínas VLDL/metabolismo , Animales , Apolipoproteínas E/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica , Enfermedades de la Retina/metabolismo , Factor de Transcripción STAT3/metabolismo
8.
BMC Complement Altern Med ; 18(1): 37, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29378549

RESUMEN

BACKGROUND: Our team has identified 17 Boreal forest species from the traditional pharmacopeia of the Eastern James Bay Cree that presented promising in vitro and in vivo biological activities in the context of type 2 diabetes (T2D). We now screened the 17 plants extracts for potential anti-apoptotic activity in cultured kidney cells and investigated the underlying mechanisms. METHODS: MDCK (Madin-Darnby Canine Kidney) cell damage was induced by hypertonic medium (700 mOsm/L) in the presence or absence of maximal nontoxic concentrations of each of the 17 plant extracts. After 18 h' treatment, cells were stained with Annexin V (AnnV) and Propidium iodide (PI) and subjected to flow cytometry to assess the cytoprotective (AnnV-/PI-) and anti-apoptotic (AnnV+/PI-) potential of the 17 plant extracts. We then selected a representative subset of species (most cytoprotective, moderately so or neutral) to measure the activity of caspases 3, 8 and 9. RESULTS: Gaultheria hispidula and Abies balsamea are amongst the most powerful cytoprotective and anti-apoptotic plants and appear to exert their modulatory effect primarily by inhibiting caspase 9 in the mitochondrial apoptotic signaling pathway. CONCLUSION: We conclude that several Cree antidiabetic plants exert anti-apoptotic activity that may be relevant in the context of diabetic nephropathy (DN) that affects a significant proportion of Cree diabetics.


Asunto(s)
Hipoglucemiantes/farmacología , Medicina Tradicional , Extractos Vegetales/farmacología , Plantas Medicinales/química , Sustancias Protectoras/farmacología , Animales , Anexina A5/química , Apoptosis/efectos de los fármacos , Canadá , Caspasas/metabolismo , Nefropatías Diabéticas/metabolismo , Perros , Hipoglucemiantes/química , Células de Riñón Canino Madin Darby , Extractos Vegetales/química , Propidio/química , Sustancias Protectoras/química
9.
J Biol Chem ; 292(16): 6644-6656, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28280243

RESUMEN

Epstein-Barr virus-induced gene 3 (EBI3) is a subunit of the composite cytokines IL-27 and IL-35. Both have beneficial functions or effects in models of infectious and autoimmune diseases. This suggests that administration of EBI3 could be therapeutically useful by binding free p28 and p35 to generate IL-27 and IL-35. IL-27- and IL-35-independent functions of EBI3 could compromise its therapeutic uses. We therefore assessed the effects of EBI3 on cytokine receptor-expressing cells. We observed that EBI3 activates STAT3 and induces the proliferation of the IL-6-dependent B9 mouse plasmacytoma cell line. Analyses using blocking mAbs and Ba/F3 transfectants expressing gp130 indicate that EBI3 activity was linked to its capacity to mediate IL-6 trans-signaling, albeit less efficiently than soluble IL-6Rα. In line with this interpretation, co-immunoprecipitation and SPR experiments indicated that EBI3 binds IL-6. An important pro-inflammatory function of IL-6 trans-signaling is to activate blood vessel endothelial cells. We observed that EBI3 in combination with IL-6 could induce the expression of chemokines by human venal endothelial cells. Our results indicate that EBI3 can promote pro-inflammatory IL-6 functions by mediating trans-signaling. These unexpected observations suggest that use of EBI3 as a therapeutic biologic for autoimmune diseases will likely require co-administration of soluble gp130 to prevent the side effects associated with IL-6 trans-signaling. Together with previous studies that demonstrated activation of IL-6R by p28 (IL-30), new findings further suggest a complex interrelation between IL-27 and IL-6.


Asunto(s)
Interleucina-6/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Receptores de Citocinas/metabolismo , Transducción de Señal , Animales , Anticuerpos Monoclonales/química , Línea Celular Tumoral , Proliferación Celular , Quimiocinas/metabolismo , Receptor gp130 de Citocinas/metabolismo , Femenino , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación , Interleucinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosforilación , Plasmacitoma/metabolismo , Unión Proteica , Receptores de Interleucina-6/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
10.
Oncotarget ; 7(13): 15811-27, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26908458

RESUMEN

Metastatic capacities are fundamental features of tumor malignancy. ADP-ribosylation factor (ARF) 1 has emerged as a key regulator of invasion in breast cancer cells. However, the importance of this GTPase, in vivo, remains to be demonstrated. We report that ARF1 is highly expressed in breast tumors of the most aggressive and advanced subtypes. Furthermore, we show that lowered expression of ARF1 impairs growth of primary tumors and inhibits lung metastasis in a murine xenograft model. To understand how ARF1 contributes to invasiveness, we used a poorly invasive breast cancer cell line, MCF7 (ER+), and examined the effects of overexpressing ARF1 to levels similar to that found in invasive cell lines. We demonstrate that ARF1 overexpression leads to the epithelial-mesenchymal transition (EMT). Mechanistically, ARF1 controls cell-cell adhesion through ß-catenin and E-cadherin, oncogenic Ras activation and expression of EMT inducers. We further show that ARF1 overexpression enhances invasion, proliferation and resistance to a chemotherapeutic agent. In vivo, ARF1 overexpressing MCF7 cells are able to form more metastases to the lung. Overall, our findings demonstrate that ARF1 is a molecular switch for cancer progression and thus suggest that limiting the expression/activation of this GTPase could help improve outcome for breast cancer patients.


Asunto(s)
Factor 1 de Ribosilacion-ADP/biosíntesis , Transición Epitelial-Mesenquimal/fisiología , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Ratones , Ratones SCID , Neoplasias de la Mama Triple Negativas/metabolismo
11.
Cytokine ; 82: 122-4, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26817395

RESUMEN

The incidence of obesity is increasing worldwide. Obesity is accompanied by a chronic inflammatory state that increases the risk of metabolic diseases such as insulin-resistance and type 2 diabetes. Over the past two decades, interest in immunomodulatory cytokines as potential mediators and/or targets for treatment or prevention of obesity and metabolic syndrome has increased. In this review, we summarize studies that revealed the effects of LIF family cytokines on adipose tissue, energy expenditure and food intake, highlighting the importance of gp130/LIFRß signaling in obesity and obesity-related metabolic diseases.


Asunto(s)
Factor Neurotrófico Ciliar/inmunología , Diabetes Mellitus Tipo 2/inmunología , Factor Inhibidor de Leucemia/inmunología , Síndrome Metabólico/inmunología , Obesidad/inmunología , Animales , Diabetes Mellitus Tipo 2/patología , Humanos , Síndrome Metabólico/patología , Obesidad/patología , Factores de Riesgo
12.
Cytokine Growth Factor Rev ; 26(5): 507-15, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26187860

RESUMEN

Ciliary neurotrophic factor (CNTF) is the most extensively studied member of the cytokine family that signal through intracellular chains of the gp130/LIFRß receptor. The severe phenotype in patients suffering from mutations inactivating LIFRß indicates that members of this cytokine family play key, non-redundant roles during development. Accordingly, three decades of research has revealed potent and promising trophic and regulatory activities of CNTF in neurons, oligodendrocytes, muscle cells, bone cells, adipocytes and retinal cells. These findings led to clinical trials to test the therapeutic potential of CNTF and CNTF derivatives for treating neurodegenerative and metabolic diseases. Promising results have encouraged continuation of studies for treating retinal degenerative diseases. Results of some clinical trials showed that side-effects may limit the systemically administrated doses of CNTF. Therefore, therapies being currently tested rely on local delivery of CNTF using encapsulated cytokine-secreting implants. Since the side effects of CNTF might be linked to its ability to activate the alternative IL6Rα-LIFRß-gp130 receptor, CNTFR-specific mutants of CNTF have been developed that bind to the CNTFRα-LIFRß-gp130 receptor. These developments may prove to be a breakthrough for therapeutic applications of systemically administered CNTF in pathologies such as multiple sclerosis or Alzheimer's disease. The "designer cytokine approach" offers future opportunities to further enhance specificity by conjugating mutant CNTF with modified soluble CNTFRα to target therapeutically relevant cells that express gp130-LIFRß and a specific cell surface marker.


Asunto(s)
Factor Neurotrófico Ciliar/uso terapéutico , Síndrome Metabólico/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Factor Neurotrófico Ciliar/genética , Factor Neurotrófico Ciliar/inmunología , Subunidad alfa del Receptor del Factor Neurotrófico Ciliar/genética , Subunidad alfa del Receptor del Factor Neurotrófico Ciliar/inmunología , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/inmunología , Humanos , Síndrome Metabólico/genética , Síndrome Metabólico/inmunología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/inmunología , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...