Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Artif Intell ; 7: 1346684, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419732

RESUMEN

Bundle recommendation aims to generate bundles of associated products that users tend to consume as a whole under certain circumstances. Modeling the bundle utility for users is a non-trivial task, as it requires to account for the potential interdependencies between bundle attributes. To address this challenge, we introduce a new preference-based approach for bundle recommendation exploiting the Choquet integral. This allows us to formalize preferences for coalitions of environmental-related attributes, thus recommending product bundles accounting for synergies among product attributes. An experimental evaluation of a dataset of local food products in Northern Italy shows how the Choquet integral allows the natural formalization of a sensible notion of environmental friendliness and that standard approaches based on weighted sums of attributes end up recommending bundles with lower environmental friendliness even if weights are explicitly learned to maximize it. We further show how preference elicitation strategies can be leveraged to acquire weights of the Choquet integral from user feedback in terms of preferences over candidate bundles, and show how a handful of queries allow to recommend optimal bundles for a diverse set of user prototypes.

2.
Nat Rev Microbiol ; 22(4): 191-205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37968359

RESUMEN

Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.


Asunto(s)
Aprendizaje Automático , Microbiota , Humanos
3.
Entropy (Basel) ; 25(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38136454

RESUMEN

Research on Explainable Artificial Intelligence has recently started exploring the idea of producing explanations that, rather than being expressed in terms of low-level features, are encoded in terms of interpretable concepts learned from data. How to reliably acquire such concepts is, however, still fundamentally unclear. An agreed-upon notion of concept interpretability is missing, with the result that concepts used by both post hoc explainers and concept-based neural networks are acquired through a variety of mutually incompatible strategies. Critically, most of these neglect the human side of the problem: a representation is understandable only insofar as it can be understood by the human at the receiving end. The key challenge in human-interpretable representation learning (hrl) is how to model and operationalize this human element. In this work, we propose a mathematical framework for acquiring interpretable representations suitable for both post hoc explainers and concept-based neural networks. Our formalization of hrl builds on recent advances in causal representation learning and explicitly models a human stakeholder as an external observer. This allows us derive a principled notion of alignment between the machine's representation and the vocabulary of concepts understood by the human. In doing so, we link alignment and interpretability through a simple and intuitive name transfer game, and clarify the relationship between alignment and a well-known property of representations, namely disentanglement. We also show that alignment is linked to the issue of undesirable correlations among concepts, also known as concept leakage, and to content-style separation, all through a general information-theoretic reformulation of these properties. Our conceptualization aims to bridge the gap between the human and algorithmic sides of interpretability and establish a stepping stone for new research on human-interpretable representations.

4.
Cognition ; 234: 105355, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36791607

RESUMEN

Bayesianism assumes that probabilistic updating does not depend on the sensory modality by which information is processed. In this study, we investigate whether probability judgments based on visual and auditory information conform to this assumption. In a series of five experiments, we found that this is indeed the case when information is acquired through a single modality (i.e., only auditory or only visual) but not necessarily so when it comes from multiple modalities (i.e., audio-visual). In the latter case, judgments prove more accurate when both visual and auditory information individually support (i.e., increase the probability of) the hypothesis they also jointly support (synergy condition) than when either visual or auditory information support one hypothesis that is not the one they jointly support (contrast condition). In the extreme case in which both visual and auditory information individually support an alternative hypothesis to the one they jointly support (i.e., double-contrast condition), participants' accuracy is not only lower than in the synergy condition but near chance. This synergy-contrast effect represents a violation of the assumption that information modality is irrelevant for Bayesian updating and indicates an important limitation of multisensory integration, one which has not been previously documented.


Asunto(s)
Percepción Auditiva , Percepción Visual , Humanos , Teorema de Bayes , Solución de Problemas , Juicio , Estimulación Acústica , Estimulación Luminosa
5.
Ethics Inf Technol ; 23(Suppl 1): 1-6, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33551673

RESUMEN

The rapid dynamics of COVID-19 calls for quick and effective tracking of virus transmission chains and early detection of outbreaks, especially in the "phase 2" of the pandemic, when lockdown and other restriction measures are progressively withdrawn, in order to avoid or minimize contagion resurgence. For this purpose, contact-tracing apps are being proposed for large scale adoption by many countries. A centralized approach, where data sensed by the app are all sent to a nation-wide server, raises concerns about citizens' privacy and needlessly strong digital surveillance, thus alerting us to the need to minimize personal data collection and avoiding location tracking. We advocate the conceptual advantage of a decentralized approach, where both contact and location data are collected exclusively in individual citizens' "personal data stores", to be shared separately and selectively (e.g., with a backend system, but possibly also with other citizens), voluntarily, only when the citizen has tested positive for COVID-19, and with a privacy preserving level of granularity. This approach better protects the personal sphere of citizens and affords multiple benefits: it allows for detailed information gathering for infected people in a privacy-preserving fashion; and, in turn this enables both contact tracing, and, the early detection of outbreak hotspots on more finely-granulated geographic scale. The decentralized approach is also scalable to large populations, in that only the data of positive patients need be handled at a central level. Our recommendation is two-fold. First to extend existing decentralized architectures with a light touch, in order to manage the collection of location data locally on the device, and allow the user to share spatio-temporal aggregates-if and when they want and for specific aims-with health authorities, for instance. Second, we favour a longer-term pursuit of realizing a Personal Data Store vision, giving users the opportunity to contribute to collective good in the measure they want, enhancing self-awareness, and cultivating collective efforts for rebuilding society.

6.
IEEE Trans Med Imaging ; 39(8): 2676-2687, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32406829

RESUMEN

Deep learning (DL) has proved successful in medical imaging and, in the wake of the recent COVID-19 pandemic, some works have started to investigate DL-based solutions for the assisted diagnosis of lung diseases. While existing works focus on CT scans, this paper studies the application of DL techniques for the analysis of lung ultrasonography (LUS) images. Specifically, we present a novel fully-annotated dataset of LUS images collected from several Italian hospitals, with labels indicating the degree of disease severity at a frame-level, video-level, and pixel-level (segmentation masks). Leveraging these data, we introduce several deep models that address relevant tasks for the automatic analysis of LUS images. In particular, we present a novel deep network, derived from Spatial Transformer Networks, which simultaneously predicts the disease severity score associated to a input frame and provides localization of pathological artefacts in a weakly-supervised way. Furthermore, we introduce a new method based on uninorms for effective frame score aggregation at a video-level. Finally, we benchmark state of the art deep models for estimating pixel-level segmentations of COVID-19 imaging biomarkers. Experiments on the proposed dataset demonstrate satisfactory results on all the considered tasks, paving the way to future research on DL for the assisted diagnosis of COVID-19 from LUS data.


Asunto(s)
Infecciones por Coronavirus/diagnóstico por imagen , Aprendizaje Profundo , Interpretación de Imagen Asistida por Computador/métodos , Neumonía Viral/diagnóstico por imagen , Ultrasonografía/métodos , Betacoronavirus , COVID-19 , Humanos , Pulmón/diagnóstico por imagen , Pandemias , Sistemas de Atención de Punto , SARS-CoV-2
7.
BMC Bioinformatics ; 20(1): 338, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208327

RESUMEN

BACKGROUND: The advent of high-throughput experimental techniques paved the way to genome-wide computational analysis and predictive annotation studies. When considering the joint annotation of a large set of related entities, like all proteins of a certain genome, many candidate annotations could be inconsistent, or very unlikely, given the existing knowledge. A sound predictive framework capable of accounting for this type of constraints in making predictions could substantially contribute to the quality of machine-generated annotations at a genomic scale. RESULTS: We present OCELOT, a predictive pipeline which simultaneously addresses functional and interaction annotation of all proteins of a given genome. The system combines sequence-based predictors for functional and protein-protein interaction (PPI) prediction with a consistency layer enforcing (soft) constraints as fuzzy logic rules. The enforced rules represent the available prior knowledge about the classification task, including taxonomic constraints over each GO hierarchy (e.g. a protein labeled with a GO term should also be labeled with all ancestor terms) as well as rules combining interaction and function prediction. An extensive experimental evaluation on the Yeast genome shows that the integration of prior knowledge via rules substantially improves the quality of the predictions. The system largely outperforms GoFDR, the only high-ranking system at the last CAFA challenge with a readily available implementation, when GoFDR is given access to intra-genome information only (as OCELOT), and has comparable or better results (depending on the hierarchy and performance measure) when GoFDR is allowed to use information from other genomes. Our system also compares favorably to recent methods based on deep learning.


Asunto(s)
Genoma Fúngico , Genómica/métodos , Anotación de Secuencia Molecular , Proteínas/genética , Saccharomyces cerevisiae/genética , Algoritmos , Toma de Decisiones , Ontología de Genes
8.
R Soc Open Sci ; 4(9): 170194, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28989732

RESUMEN

The recent personality psychology literature has coined the name of personality states to refer to states having the same behavioural, affective and cognitive content (described by adjectives) as the corresponding trait, but for a shorter duration. The variability in personality states may be the reaction to specific characteristics of situations. The aim of our study is to investigate whether specific situational factors, that is, different configurations of face-to-face interactions, are predictors of variability of personality states in a work environment. The obtained results provide evidence that within-person variability in personality is associated with variation in face-to-face interactions. Interestingly, the effects differ by type and level of the personality states: adaptation effects for Agreeableness and Emotional Stability, whereby the personality states of an individual trigger similar states in other people interacting with them and complementarity effects for Openness to Experience, whereby the personality states of an individual trigger opposite states in other people interacting with them. Overall, these findings encourage further research to characterize face-to-face and social interactions in terms of their relevance to personality states.

9.
J Neurosci Methods ; 285: 97-108, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28495369

RESUMEN

BACKGROUND: The use of machine learning models to discriminate between patterns of neural activity has become in recent years a standard analysis approach in neuroimaging studies. Whenever these models are linear, the estimated parameters can be visualized in the form of brain maps which can aid in understanding how brain activity in space and time underlies a cognitive function. However, the recovered brain maps often suffer from lack of interpretability, especially in group analysis of multi-subject data. NEW METHOD: To facilitate the application of brain decoding in group-level analysis, we present an application of multi-task joint feature learning for group-level multivariate pattern recovery in single-trial magnetoencephalography (MEG) decoding. The proposed method allows for recovering sparse yet consistent patterns across different subjects, and therefore enhances the interpretability of the decoding model. RESULTS: Our experimental results demonstrate that the mutli-task joint feature learning framework is capable of recovering more meaningful patterns of varying spatio-temporally distributed brain activity across individuals while still maintaining excellent generalization performance. COMPARISON WITH EXISTING METHODS: We compare the performance of the multi-task joint feature learning in terms of generalization, reproducibility, and quality of pattern recovery against traditional single-subject and pooling approaches on both simulated and real MEG datasets. CONCLUSIONS: These results can facilitate the usage of brain decoding for the characterization of fine-level distinctive patterns in group-level inference. Considering the importance of group-level analysis, the proposed approach can provide a methodological shift towards more interpretable brain decoding models.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Magnetoencefalografía , Aprendizaje Verbal/fisiología , Algoritmos , Encéfalo/diagnóstico por imagen , Simulación por Computador , Electroencefalografía , Femenino , Humanos , Masculino , Neuroimagen , Reproducibilidad de los Resultados , Máquina de Vectores de Soporte
10.
Bioinformatics ; 32(23): 3627-3634, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27503225

RESUMEN

MOTIVATION: Information about RNA-protein interactions is a vital pre-requisite to tackle the dissection of RNA regulatory processes. Despite the recent advances of the experimental techniques, the currently available RNA interactome involves a small portion of the known RNA binding proteins. The importance of determining RNA-protein interactions, coupled with the scarcity of the available information, calls for in silico prediction of such interactions. RESULTS: We present RNAcommender, a recommender system capable of suggesting RNA targets to unexplored RNA binding proteins, by propagating the available interaction information taking into account the protein domain composition and the RNA predicted secondary structure. Our results show that RNAcommender is able to successfully suggest RNA interactors for RNA binding proteins using little or no interaction evidence. RNAcommender was tested on a large dataset of human RBP-RNA interactions, showing a good ranking performance (average AUC ROC of 0.75) and significant enrichment of correct recommendations for 75% of the tested RBPs. RNAcommender can be a valid tool to assist researchers in identifying potential interacting candidates for the majority of RBPs with uncharacterized binding preferences. AVAILABILITY AND IMPLEMENTATION: The software is freely available at http://rnacommender.disi.unitn.it CONTACT: gianluca.corrado@unitn.it or andrea.passerini@unitn.itSupplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas de Unión al ARN/química , ARN/química , Programas Informáticos , Humanos , Unión Proteica
11.
Front Neurosci ; 10: 619, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28167896

RESUMEN

Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future.

12.
J Cell Biol ; 208(5): 581-96, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25713412

RESUMEN

Translation is increasingly recognized as a central control layer of gene expression in eukaryotic cells. The overall organization of mRNA and ribosomes within polysomes, as well as the possible role of this organization in translation are poorly understood. Here we show that polysomes are primarily formed by three distinct classes of ribosome assemblies. We observe that these assemblies can be connected by naked RNA regions of the transcript. We show that the relative proportions of the three classes of ribosome assemblies reflect, and probably dictate, the level of translational activity. These results reveal the existence of recurrent supra-ribosomal building blocks forming polysomes and suggest the presence of unexplored translational controls embedded in the polysome structure.


Asunto(s)
Polirribosomas/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Línea Celular Tumoral , Humanos
13.
BMC Bioinformatics ; 15: 309, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25238967

RESUMEN

BACKGROUND: Viruses are typically characterized by high mutation rates, which allow them to quickly develop drug-resistant mutations. Mining relevant rules from mutation data can be extremely useful to understand the virus adaptation mechanism and to design drugs that effectively counter potentially resistant mutants. RESULTS: We propose a simple statistical relational learning approach for mutant prediction where the input consists of mutation data with drug-resistance information, either as sets of mutations conferring resistance to a certain drug, or as sets of mutants with information on their susceptibility to the drug. The algorithm learns a set of relational rules characterizing drug-resistance and uses them to generate a set of potentially resistant mutants. Learning a weighted combination of rules allows to attach generated mutants with a resistance score as predicted by the statistical relational model and select only the highest scoring ones. CONCLUSIONS: Promising results were obtained in generating resistant mutations for both nucleoside and non-nucleoside HIV reverse transcriptase inhibitors. The approach can be generalized quite easily to learning mutants characterized by more complex rules correlating multiple mutations.


Asunto(s)
Algoritmos , Farmacorresistencia Viral , Infecciones por VIH/virología , VIH/genética , Modelos Genéticos , Mutación , Inhibidores de la Transcriptasa Inversa/farmacología , Secuencia de Aminoácidos , Inteligencia Artificial , VIH/efectos de los fármacos , VIH/enzimología , Infecciones por VIH/tratamiento farmacológico , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/metabolismo , Humanos , Modelos Biológicos , Modelos Estadísticos , Datos de Secuencia Molecular , Nucleósidos/química , Nucleósidos/farmacología , Inhibidores de la Transcriptasa Inversa/química
14.
IEEE Trans Neural Netw Learn Syst ; 25(3): 506-19, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24807447

RESUMEN

This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques.

15.
BMC Genomics ; 15: 304, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24758252

RESUMEN

BACKGROUND: The progress in mapping RNA-protein and RNA-RNA interactions at the transcriptome-wide level paves the way to decipher possible combinatorial patterns embedded in post-transcriptional regulation of gene expression. RESULTS: Here we propose an innovative computational tool to extract clusters of mRNA trans-acting co-regulators (RNA binding proteins and non-coding RNAs) from pairwise interaction annotations. In addition the tool allows to analyze the binding site similarity of co-regulators belonging to the same cluster, given their positional binding information. The tool has been tested on experimental collections of human and yeast interactions, identifying modules that coordinate functionally related messages. CONCLUSIONS: This tool is an original attempt to uncover combinatorial patterns using all the post-transcriptional interaction data available so far. PTRcombiner is available at http://disi.unitn.it/~passerini/software/PTRcombiner/.


Asunto(s)
Regulación de la Expresión Génica , Procesamiento Postranscripcional del ARN , Sitios de Unión
16.
BMC Bioinformatics ; 15: 103, 2014 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-24725682

RESUMEN

BACKGROUND: Protein-protein interactions can be seen as a hierarchical process occurring at three related levels: proteins bind by means of specific domains, which in turn form interfaces through patches of residues. Detailed knowledge about which domains and residues are involved in a given interaction has extensive applications to biology, including better understanding of the binding process and more efficient drug/enzyme design. Alas, most current interaction prediction methods do not identify which parts of a protein actually instantiate an interaction. Furthermore, they also fail to leverage the hierarchical nature of the problem, ignoring otherwise useful information available at the lower levels; when they do, they do not generate predictions that are guaranteed to be consistent between levels. RESULTS: Inspired by earlier ideas of Yip et al. (BMC Bioinformatics 10:241, 2009), in the present paper we view the problem as a multi-level learning task, with one task per level (proteins, domains and residues), and propose a machine learning method that collectively infers the binding state of all object pairs. Our method is based on Semantic Based Regularization (SBR), a flexible and theoretically sound machine learning framework that uses First Order Logic constraints to tie the learning tasks together. We introduce a set of biologically motivated rules that enforce consistent predictions between the hierarchy levels. CONCLUSIONS: We study the empirical performance of our method using a standard validation procedure, and compare its performance against the only other existing multi-level prediction technique. We present results showing that our method substantially outperforms the competitor in several experimental settings, indicating that exploiting the hierarchical nature of the problem can lead to better predictions. In addition, our method is also guaranteed to produce interactions that are consistent with respect to the protein-domain-residue hierarchy.


Asunto(s)
Inteligencia Artificial , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Semántica , Modelos Moleculares , Unión Proteica , Proteínas/metabolismo , Programas Informáticos
17.
BMC Bioinformatics ; 15: 16, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24428894

RESUMEN

BACKGROUND: Computational methods for the prediction of protein features from sequence are a long-standing focus of bioinformatics. A key observation is that several protein features are closely inter-related, that is, they are conditioned on each other. Researchers invested a lot of effort into designing predictors that exploit this fact. Most existing methods leverage inter-feature constraints by including known (or predicted) correlated features as inputs to the predictor, thus conditioning the result. RESULTS: By including correlated features as inputs, existing methods only rely on one side of the relation: the output feature is conditioned on the known input features. Here we show how to jointly improve the outputs of multiple correlated predictors by means of a probabilistic-logical consistency layer. The logical layer enforces a set of weighted first-order rules encoding biological constraints between the features, and improves the raw predictions so that they least violate the constraints. In particular, we show how to integrate three stand-alone predictors of correlated features: subcellular localization (Loctree [J Mol Biol 348:85-100, 2005]), disulfide bonding state (Disulfind [Nucleic Acids Res 34:W177-W181, 2006]), and metal bonding state (MetalDetector [Bioinformatics 24:2094-2095, 2008]), in a way that takes into account the respective strengths and weaknesses, and does not require any change to the predictors themselves. We also compare our methodology against two alternative refinement pipelines based on state-of-the-art sequential prediction methods. CONCLUSIONS: The proposed framework is able to improve the performance of the underlying predictors by removing rule violations. We show that different predictors offer complementary advantages, and our method is able to integrate them using non-trivial constraints, generating more consistent predictions. In addition, our framework is fully general, and could in principle be applied to a vast array of heterogeneous predictions without requiring any change to the underlying software. On the other hand, the alternative strategies are more specific and tend to favor one task at the expense of the others, as shown by our experimental evaluation. The ultimate goal of our framework is to seamlessly integrate full prediction suites, such as Distill [BMC Bioinformatics 7:402, 2006] and PredictProtein [Nucleic Acids Res 32:W321-W326, 2004].


Asunto(s)
Algoritmos , Biología Computacional/métodos , Proteínas/química , Análisis de Secuencia de Proteína/métodos , Estructura Terciaria de Proteína , Programas Informáticos
18.
BMC Genomics ; 13: 220, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22672192

RESUMEN

BACKGROUND: The classical view on eukaryotic gene expression proposes the scheme of a forward flow for which fluctuations in mRNA levels upon a stimulus contribute to determine variations in mRNA availability for translation. Here we address this issue by simultaneously profiling with microarrays the total mRNAs (the transcriptome) and the polysome-associated mRNAs (the translatome) after EGF treatment of human cells, and extending the analysis to other 19 different transcriptome/translatome comparisons in mammalian cells following different stimuli or undergoing cell programs. RESULTS: Triggering of the EGF pathway results in an early induction of transcriptome and translatome changes, but 90% of the significant variation is limited to the translatome and the degree of concordant changes is less than 5%. The survey of other 19 different transcriptome/translatome comparisons shows that extensive uncoupling is a general rule, in terms of both RNA movements and inferred cell activities, with a strong tendency of translation-related genes to be controlled purely at the translational level. By different statistical approaches, we finally provide evidence of the lack of dependence between changes at the transcriptome and translatome levels. CONCLUSIONS: We propose a model of diffused independency between variation in transcript abundances and variation in their engagement on polysomes, which implies the existence of specific mechanisms to couple these two ways of regulating gene expression.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Receptores ErbB/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , ARN/metabolismo , Transducción de Señal
19.
Artículo en Inglés | MEDLINE | ID: mdl-21606549

RESUMEN

Prediction of binding sites from sequence can significantly help toward determining the function of uncharacterized proteins on a genomic scale. The task is highly challenging due to the enormous amount of alternative candidate configurations. Previous research has only considered this prediction problem starting from 3D information. When starting from sequence alone, only methods that predict the bonding state of selected residues are available. The sole exception consists of pattern-based approaches, which rely on very specific motifs and cannot be applied to discover truly novel sites. We develop new algorithmic ideas based on structured-output learning for determining transition-metal-binding sites coordinated by cysteines and histidines. The inference step (retrieving the best scoring output) is intractable for general output types (i.e., general graphs). However, under the assumption that no residue can coordinate more than one metal ion, we prove that metal binding has the algebraic structure of a matroid, allowing us to employ a very efficient greedy algorithm. We test our predictor in a highly stringent setting where the training set consists of protein chains belonging to SCOP folds different from the ones used for accuracy estimation. In this setting, our predictor achieves 56 percent precision and 60 percent recall in the identification of ligand-ion bonds.


Asunto(s)
Sitios de Unión , Biología Computacional/métodos , Metales , Proteínas , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Metales/química , Metales/metabolismo , Datos de Secuencia Molecular , Proteínas/química , Proteínas/metabolismo
20.
Nucleic Acids Res ; 39(Web Server issue): W288-92, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21576237

RESUMEN

MetalDetector identifies CYS and HIS involved in transition metal protein binding sites, starting from sequence alone. A major new feature of release 2.0 is the ability to predict which residues are jointly involved in the coordination of the same metal ion. The server is available at http://metaldetector.dsi.unifi.it/v2.0/.


Asunto(s)
Metaloproteínas/química , Metales/química , Programas Informáticos , Sitios de Unión , Cisteína/química , Histidina/química , Internet , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...