Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39005345

RESUMEN

The primarily disordered C-terminal domain (CTD) of TAR DNA binding protein-43 (TDP-43), a key nuclear protein in RNA metabolism, forms neuronal inclusions in several neurodegenerative diseases. A conserved region (CR, spanning residues 319-341) in CTD forms transient helix-helix contacts important for its higher-order oligomerization and function that are disrupted by ALS-associated mutations. However, the structural details of CR assembly and the explanation for several ALS-associated variants' impact on phase separation and function remain unclear due to challenges in analyzing the dynamic association of TDP-43 CTD using traditional structural biology approaches. By employing an integrative approach, combining biophysical experiments, biochemical assays, AlphaFold2-Multimer (AF2-Multimer), and atomistic simulations, we generated structural models of helical oligomerization of TDP-43 CR. Using NMR, we first established that the native state of TDP-43 CR under physiological conditions is α-helical. Next, alanine scanning mutagenesis revealed that while hydrophobic residues in the CR are important for CR assembly, phase separation and TDP-43 nuclear retention function, polar residues down regulate these processes. Finally, pairing AF2-Multimer modeling with AAMD simulations indicated that dynamic, oligomeric assemblies of TDP-43 that are stabilized by a methionine-rich core with specific contributions from a tryptophan/leucine pair. In conclusion, our results advance the structural understanding of the mechanisms driving TDP-43 function and provide a window into the initial stages of its conversion into pathogenic aggregates.

2.
Cell Rep ; 43(4): 113999, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38554281

RESUMEN

Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N6-methyladenosine (m6A) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the m6A requirement in MNs, we depleted the m6A methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey m6A effects, and their silencing phenocopies METTL3 depletion. Among the m6A targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired m6A signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.


Asunto(s)
Neuronas Colinérgicas , Metiltransferasas , Enfermedades Neuromusculares , Animales , Humanos , Ratones , Adenosina/metabolismo , Adenosina/análogos & derivados , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/genética , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Enfermedades Neuromusculares/metabolismo , Enfermedades Neuromusculares/patología
3.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328053

RESUMEN

Cytosolic aggregation of the nuclear protein TDP-43 is associated with many neurodegenerative diseases, but the triggers for TDP-43 aggregation are still debated. Here, we demonstrate that TDP-43 aggregation requires a double event. One is up-concentration in stress granules beyond a threshold, and the other is oxidative stress. These two events collectively induce intra-condensate demixing, giving rise to a dynamic TDP-43 enriched phase within stress granules, which subsequently transitions into pathological aggregates. Mechanistically, intra-condensate demixing is triggered by local unfolding of the RRM1 domain for intermolecular disulfide bond formation and by increased hydrophobic patch interactions in the C-terminal domain. By engineering TDP-43 variants resistant to intra-condensate demixing, we successfully eliminate pathological TDP-43 aggregates in cells. We conclude that up-concentration inside condensates and simultaneous exposure to environmental stress could be a general pathway for protein aggregation, with intra-condensate demixing constituting a key intermediate step.

4.
PLoS Biol ; 22(2): e3002527, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422113

RESUMEN

TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.


Asunto(s)
Proteínas de Unión al ADN , Ribonucleoproteínas , Proteinopatías TDP-43 , Humanos , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/metabolismo , Sustancias Macromoleculares/metabolismo , Ribonucleoproteínas/metabolismo , ARN , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/metabolismo
5.
bioRxiv ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37609278

RESUMEN

TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.

6.
J Vis Exp ; (183)2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35635462

RESUMEN

Ubiquitylation is a post-translational modification which occurs in eukaryotic cells that is critical for several biological pathways' regulation, including cell survival, proliferation, and differentiation. It is a reversible process that consists of a covalent attachment of ubiquitin to the substrate through a cascade reaction of at least three different enzymes, composed of E1 (Ubiquitin-activation enzyme), E2 (Ubiquitin-conjugating enzyme), and E3 (Ubiquitin-ligase enzyme). The E3 complex plays an important role in substrate recognition and ubiquitylation. Here, a protocol is described to evaluate substrate ubiquitylation in mammalian cells using transient co-transfection of a plasmid encoding the selected substrate, an E3 ubiquitin ligase, and a tagged ubiquitin. Before lysis, the transfected cells are treated with the proteasome inhibitor MG132 (carbobenzoxy-leu-leu-leucinal) to avoid substrate proteasomal degradation. Furthermore, the cell extract is submitted to small-scale immunoprecipitation (IP) to purify the polyubiquitylated substrate for subsequent detection by western blotting (WB) using specific antibodies for ubiquitin tag. Hence, a consistent and uncomplicated protocol for ubiquitylation assay in mammalian cells is described to assist scientists in addressing ubiquitylation of specific substrates and E3 ubiquitin ligases.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Animales , Mamíferos/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
7.
Biochim Biophys Acta Gen Subj ; 1865(1): 129754, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33010352

RESUMEN

BACKGROUND: Ubiquitously eXpressed Transcript isoform 2 (UXTV2) is a prefoldin-like protein involved in NF-κB signaling, apoptosis, and the androgen and estrogen response. UXT-V2 is a cofactor in the NF-κB transcriptional enhanceosome, and its knockdown inhibits TNF-α -induced NF-κB activation. Fbxo7 is an F-box protein that interacts with SKP1, Cullin1 and RBX1 proteins to form an SCF(Fbxo7) E3 ubiquitin ligase complex. Fbxo7 negatively regulates NF-κB signaling through TRAF2 and cIAP1 ubiquitination. METHODS: We combine co-immunoprecipitation, ubiquitination in vitro and in vivo, cycloheximide chase assay, ubiquitin chain restriction analysis and microscopy to investigate interaction between Fbxo7 and overexpressed UXT-V2-HA. RESULTS: The Ubl domain of Fbxo7 contributes to interaction with UXTV2. This substrate is polyubiquitinated by SCF(Fbxo7) with K48 and K63 ubiquitin chain linkages in vitro and in vivo. This post-translational modification decreases UXT-V2 stability and promotes its proteasomal degradation. We further show that UXTV1, an alternatively spliced isoform of UXT, containing 12 additional amino acids at the N-terminus as compared to UXTV2, also interacts with and is ubiquitinated by Fbxo7. Moreover, FBXO7 knockdown promotes UXT-V2 accumulation, and the overexpression of Fbxo7-ΔF-box protects UXT-V2 from proteasomal degradation and enhances the responsiveness of NF-κB reporter. We find that UXT-V2 colocalizes with Fbxo7 in the cell nucleus. CONCLUSIONS: Together, our study reveals that SCF(Fbxo7) mediates the proteasomal degradation of UXT-V2 causing the inhibition of the NF-κB signaling pathway. GENERAL SIGNIFICANCE: Discovering new substrates of E3 ubiquitin-ligase SCF(Fbxo7) contributes to understand its function in different diseases such as cancer and Parkinson.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Chaperonas Moleculares/metabolismo , FN-kappa B/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Línea Celular Tumoral , Células HEK293 , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Isoformas de Proteínas/metabolismo , Proteolisis , Ubiquitinación
8.
J Bacteriol ; 202(17)2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32540933

RESUMEN

Enterococcus faecalis is an opportunistic pathogen capable of causing infections, including endocarditis and urinary tract infections (UTI). One of the well-characterized quorum-sensing pathways in E. faecalis involves coordination of the conjugal transfer of pheromone-responsive plasmids by PrgX, a member of the RRNPP protein family. Members of this protein family in various Firmicutes have also been shown to contribute to numerous cellular processes, including sporulation, competence, conjugation, nutrient sensing, biofilm formation, and virulence. As PrgX is a plasmid-encoded RRNPP family member, we surveyed the genome of the multidrug-resistant strain V583 for additional RRNPP homologs using computational searches and refined those identified hits for predicted structural similarities to known RRNPP family members. This led us to investigate the contribution of the chromosomally encoded RRNPP homologs to biofilm processes and pathogenesis in a catheter-associated urinary tract infection (CAUTI) model. In this study, we identified five such homologs and report that 3 of the 5 homologs, EF0073, EF1599, and EF1316, affect biofilm formation as well as outcomes in the CAUTI model.IMPORTANCEEnterococcus faecalis causes health care-associated infections and displays resistance to a variety of broad-spectrum antibiotics by acquisition of resistance traits as well as the ability to form biofilms. Even though a growing number of factors related to biofilm formation have been identified, mechanisms that contribute to biofilm formation are still largely unknown. Members of the RRNPP protein family regulate a diverse set of biological reactions in low-G+C Gram-positive bacteria (Firmicutes). Here, we identify three predicted structural homologs of the RRNPP family, EF0073, EF1599, and EF1316, which affect biofilm formation and CAUTI pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Enterococcus faecalis/metabolismo , Infecciones Urinarias/microbiología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...