Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1384463, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077733

RESUMEN

Bioelectrochemical systems offer unique opportunities to remove recalcitrant environmental pollutants in a net positive energy process, although it remains challenging because of the toxic character of such compounds. In this study, microbial fuel cell (MFC) technology was applied to investigate the benzene degradation process for more than 160 days, where glucose was used as a co-metabolite and a control. We have applied an inoculation strategy that led to the development of 10 individual microbial communities. The electrochemical dynamics of MFC efficiency was observed, along with their 1H NMR metabolic fingerprints and analysis of the microbial community. The highest power density of 120 mW/m2 was recorded in the final period of the experiment when benzene/glucose was used as fuel. This is the highest value reported in a benzene/co-substrate system. Metabolite analysis confirmed the full removal of benzene, while the dominance of fermentation products indicated the strong occurrence of non-electrogenic reactions. Based on 16S rRNA gene amplicon sequencing, bacterial community analysis revealed several petroleum-degrading microorganisms, electroactive species and biosurfactant producers. The dominant species were recognised as Citrobacter freundii and Arcobacter faecis. Strong, positive impact of the presence of benzene on the alpha diversity was recorded, underlining the high complexity of the bioelectrochemically supported degradation of petroleum compounds. This study reveals the importance of supporting the bioelectrochemical degradation process with auxiliary substrates and inoculation strategies that allow the communities to reach sufficient diversity to improve the power output and degradation efficiency in MFCs beyond the previously known limits. This study, for the first time, provides an outlook on the syntrophic activity of biosurfactant producers and petroleum degraders towards the efficient removal and conversion of recalcitrant hydrophobic compounds into electricity in MFCs.

2.
J Environ Manage ; 365: 121514, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908152

RESUMEN

Microbial fuel cells (MFCs) have been recently proven to synthesise biosurfactants from waste products. In classic bioreactors, the efficiency of biosynthesis process can be controlled by the concentration of nitrogen content in the electrolyte. However, it was not known whether a similar control mechanism could be applied in current-generating conditions. In this work, the effect of nitrogen concentration on biosurfactant production from waste cooking oil was investigated. The concentration of NH4Cl in the electrolyte ranged from 0 to 1 g L-1. The maximum power density equal to 17.5 W m-3 was achieved at a concentration of 0.5 g L-1 (C/N = 2.32) and was accompanied by the highest surface tension decrease (to 54.6 mN m-1) and an emulsification activity index of 95.4%. Characterisation of the biosurfactants produced by the LC-MS/MS method showed the presence of eleven compounds belonging to the mono- and di-rhamnolipids group, most likely produced by P. aeruginosa, which was the most abundant (19.6%) in the community. Importantly, we have found a strong correlation (R = -0.96) of power and biosurfactant activity in response to C/N ratio. This study shows that nitrogen plays an important role in the current-generating metabolism of waste cooking oil. To the best of our knowledge, this is the first study where the nitrogen optimisation was investigated to improve the synthesis of biosurfactants and power generation in a bioelectrochemical system.


Asunto(s)
Fuentes de Energía Bioeléctrica , Glucolípidos , Nitrógeno , Tensoactivos , Nitrógeno/metabolismo , Tensoactivos/metabolismo , Glucolípidos/metabolismo , Electrodos , Reactores Biológicos
3.
Life (Basel) ; 13(10)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37895400

RESUMEN

One of the inflammatory bowel diseases is Crohn's disease. Although this term has been used in the medical community since 1932, a significant increase in the number of publications occurs at the end of the 20th century and the beginning of the 21st century. Crohn's disease is a disease that cannot be fully cured. In many cases, it is chronic, i.e., recurrent. All preventive and therapeutic measures taken by doctors are aimed at inhibiting the development of the disease and minimizing the occurrence of any potential "side effects" resulting from the developing disease. One of the diagnostic methods is the qualitative and quantitative determination of metalloproteinases in inflammatory tissues and in the blood. The aim of the study was the quantitative and qualitative determination of metalloproteinases in inflammatory bowel tissues in patients diagnosed with Crohn's disease. The in vitro study was performed on surgical tissues from patients diagnosed with Crohn's disease. The results show that in inflammatory tissues the concentration of metalloproteinases -3, -7, -8, -9 was higher compared to tissues taken from the resection margin without signs of inflammation, defined as healthy. The experiment confirmed that the biochemical test, which is the determination of metalloproteinases in tissues, is a useful diagnostic tool to differentiate inflammatory from non-inflammatory tissues.

4.
Life (Basel) ; 13(10)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37895443

RESUMEN

Crohn's disease is a chronic inflammatory bowel disease that affects the ileum and/or large intestine. At the same time, it can also affect any other part of the human body, i.e., from the mouth to the anus. In Crohn's disease, the physiology and functioning of the epithelial barrier are inhibited due to the correlation of various factors, such as the environment, genetic susceptibility or intestinal microbiota. The symptoms are very troublesome and cause a significant reduction in quality of life, sometimes occurring with paralyzing permanent damage to the digestive tract, requiring enteral or parenteral nutrition throughout life. In order to make a proper and accurate diagnosis, an appropriately selected diagnostic path in a given clinical entity is necessary. Standard diagnostic methods are: laboratory examination, histopathological examination, endoscopic examination, X-ray, computed tomography, ultrasound examination and magnetic resonance imaging. Medical biology and the analysis of metalloproteinases have also proved helpful in diagnosing changes occurring as a result of Crohn's disease. Here we provide a thorough review of the latest reports on Crohn's disease and its genetic conditions, symptoms, morphology, diagnosis (including the analysis of Crohn's disease biomarkers, i.e., metalloproteinases) and treatment.

5.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36850445

RESUMEN

Surface monitoring of landfills is crucial not only during their operation but also for later land restoration and development. Measurements concern environmental factors, such as leachate, migration of pollutants to water, biogas, and atmospheric emissions, and geotechnical factors, such as stability and subsidence. Landfill subsidence can be measured using modern surveying techniques. Modern measurement methods for landfill body displacement monitoring and their control after restoration and adaptation as recreational areas include terrestrial laser scanning (TLS), and scanning and low-altitude photogrammetric measurements from an unmanned aerial vehicle (UAV). The acquired measurement data in the form of 3D point clouds should be referenced to the local control network to enable a comprehensive analysis of data acquired using various techniques, including geotechnical sensors such as benchmarks, piezometers, and inclinometers. This study discusses the need for surface monitoring of municipal solid waste (MSW) landfills. A properly 3-D mapped landfill mass is the basis for ensuring the geotechnical safety of the restored landfill. Based on archival data and current measurements of the Radiowo landfill (Poland), this study compares the advantages and limitations of the following measurement techniques: linear and angular measurements, satellite measurements, TLS, and UAV scanning and photogrammetry, considering specific conditions of the location and vegetation of the landfill. Solutions for long-term monitoring were proposed, considering the cost and time resolution necessary for creating a differential model of landfill geometry changes.

6.
iScience ; 25(7): 104510, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35720268

RESUMEN

Bioelectrochemical systems (BESs) have made significant progress in recent years in all aspects of their technology. BESs usually work with a membrane or a separator, which is one of their most critical components affecting performance. Quite often, biofilm from either the anolyte or catholyte forms on the membrane, which can negatively affect its performance. In critical cases, the long-term power performance observed for microbial fuel cells (MFCs) has dropped by over 90%. Surface modification and composite material approaches as well as chemical and physical cleaning techniques involving surfactants, acids, hydroxides, and ultrasounds have been successfully implemented to combat biofilm formation. Surface modifications produced up to 6-7 times higher power performance in the long-term, whereas regeneration strategies resulted in up to 100% recovery of original performance. Further studies include tools such as fluid dynamics-based design and plasma cleaning. The biofouling area is still underexplored in the field of bioelectrochemistry and requires systematic improvement. Therefore, this review summarizes the most recent knowledge with the aim of helping the research and engineering community select the best strategy and discuss further perspectives for combating the undesirable biofilm.

7.
Waste Manag Res ; 40(9): 1402-1411, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35199614

RESUMEN

Proper management of municipal solid waste (MSW) is crucial to avoid pollution, environmental impacts and threat to public health. The problem of MSW is mainly arising from inadequate landfill site management. The objective of this study was to evaluate the impact of management practices and environmental risks at two landfill sites. The landfills were subject to long-term (10 years) vegetation monitoring. The vegetation was assessed using a floristic survey of identified plant species. The vegetation analysis showed that significant differences existed between the two landfill locations, with neophytes, invasive and expansive species dominating on one of the landfill sites, which may be attributed to climatic and geomorphological differences between the two sites, but also to variations in landfill management. These environmentally problematic species can potentially spread from the landfill into adjacent ecosystems, displace native plants and degrade adjacent farmland areas. The study of vegetation monitoring data suggests that, in addition to other types of monitoring, landfills should be subjected to regular vegetation biomonitoring, too. Landfill management practices should target the regulation of unwanted species, create conditions that are favourable to native plant species and provide as early as possible the restoration of filled cells.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Ecosistema , Ambiente , Residuos Sólidos/análisis , Instalaciones de Eliminación de Residuos
8.
Biofilm ; 3: 100057, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34729468

RESUMEN

Bioelectrochemical systems (BES) represent a wide range of different biofilm-based bioreactors that includes microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The first described bioelectrical bioreactor is the Microbial Fuel Cell and with the exception of MDCs, it is the only type of BES that actually produces harvestable amounts of electricity, rather than requiring an electrical input to function. For these reasons, this review article, with previously unpublished supporting data, focusses primarily on MFCs. Of relevance is the architecture of these bioreactors, the type of membrane they employ (if any) for separating the chambers along with the size, as well as the geometry and material composition of the electrodes which support biofilms. Finally, the structure, properties and growth rate of the microbial biofilms colonising anodic electrodes, are of critical importance for rendering these devices, functional living 'engines' for a wide range of applications.

9.
Sensors (Basel) ; 20(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105892

RESUMEN

Displacements of landfills play an important role in the reclamation process and geotechnical safety improvement of such sites. Landfill settlements are defined as a vertical displacement of waste body due to compression, degradable nature of the waste, and creep phenomenon of the waste particles. Waste composition is more diverse than natural soil. Thus, it has to be properly placed and compacted since the landfill body will continuously settle down. Several models of the landfill displacement estimation have already been developed. The aim of the present study was: (i) to review the methods of landfill settlements computation and (ii) to propose the model allowing landfill body displacements simulation based on monitoring datasets applying a Global Navigation Satellite Systems (GNSS) measurement. The new model employs Gauss-Newton iteration and Runge-Kutta methods to estimate landfill surface displacements. The objectives were to analyse and mathematically describe the landfill body displacements. The GNSS geodetic survey and computations allowed concluding that the landfill body has been transformed over the years. The results revealed that the curves of waste displacement are in agreement with the measured total displacement of the landfill, and all curves corresponding to waste displacement are perpendicular to the active edge of the landfill. In the period of a maximum of 4.5 years after the waste deposition with a layer of up to 16.2 m thickness, the phenomenon of expansion was observed, which then disappears, and more settlement occurs due to the gravity of upper layers. The analysed landfill as a whole does not experience significant displacements. Neither of the slope failures are observed, even for large inclination.

10.
Front Microbiol ; 11: 358, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231644

RESUMEN

Bioelectrochemical systems (BESs) are ruled by a complex combination of biological and abiotic factors. The interplay of these factors determines the overall efficiency of BES in generating electricity and treating waste. The recent progress in bioelectrochemistry of BESs and electrobiotechnology exposed an important group of compounds, which have a significant contribution to operation and efficiency: surface-active agents, also termed surfactants. Implementation of the interfacial science led to determining several effects of synthetic and natural surfactants on BESs operation. In high pH, these amphiphilic compounds prevent the cathode electrodes from biodeterioration. Through solubilization, their presence leads to increased catabolism of hydrophobic compounds. They interfere with the surface of the electrodes leading to improved biofilm formation, while affecting its microarchitecture and composition. Furthermore, they may act as quorum sensing activators and induce the synthesis of electron shuttles produced by electroactive bacteria. On the other hand, the bioelectrochemical activity can be tailored for new, improved biosurfactant production processes. Herein, the most recent knowledge on the effects of these promising compounds in BESs is discussed.

11.
Sci Rep ; 9(1): 11787, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409853

RESUMEN

Microbial electrochemical technology is emerging as an alternative way of treating waste and converting this directly to electricity. Intensive research on these systems is ongoing but it currently lacks the evaluation of possible environmental transmission of enteric viruses originating from the waste stream. In this study, for the first time we investigated this aspect by assessing the removal efficiency of hepatitis B core and surface antigens in cascades of continuous flow microbial fuel cells. The log-reduction (LR) of surface antigen (HBsAg) reached a maximum value of 1.86 ± 0.20 (98.6% reduction), which was similar to the open circuit control and degraded regardless of the recorded current. Core antigen (HBcAg) was much more resistant to treatment and the maximal LR was equal to 0.229 ± 0.028 (41.0% reduction). The highest LR rate observed for HBsAg was 4.66 ± 0.19 h-1 and for HBcAg 0.10 ± 0.01 h-1. Regression analysis revealed correlation between hydraulic retention time, power and redox potential on inactivation efficiency, also indicating electroactive behaviour of biofilm in open circuit control through the snorkel-effect. The results indicate that microbial electrochemical technologies may be successfully applied to reduce the risk of environmental transmission of hepatitis B virus but also open up the possibility of testing other viruses for wider implementation.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electricidad , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/terapia , Antígenos del Núcleo de la Hepatitis B/inmunología , Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B/patogenicidad , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/microbiología , Humanos , Factores Inmunológicos , Hígado/inmunología , Hígado/patología , Hígado/virología , Orina/microbiología
12.
J Ind Microbiol Biotechnol ; 46(5): 587-599, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30796542

RESUMEN

Microbial fuel cell (MFC) technology is currently gaining recognition as one of the most promising bioenergy technologies of the future. One aspect of this technology that has received little attention is the disinfection of effluents and the fate of pathogenic organisms that find their way into the waste stream. In this study, three independent trials were carried out to evaluate the fate of three bioluminescent pathogenic bacteria (Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus) introduced into the anodic chamber of a urine-fed cascade of 9 MFCs with matured, electroactive biofilms. These are common examples of enteric human pathogens, which could contaminate urine or waste streams. The results showed that the average power generation in the closed circuit cascade reached 754 ± 16 µW, with an average pathogen log-fold reduction of 6.24 ± 0.63 compared to 2.01 ± 0.26 for the open circuit cascade for all three pathogens. The results suggest that the bio-electrochemical reactions associated with electricity generation were the primary driving force for the inactivation of the introduced pathogens. These findings show that pathogenic organisms introduced into waste streams could be inactivated by the power-generating process within the MFC cascade system, thereby preventing propagation and thus rendering the effluent safer for possible reuse.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Pseudomonas aeruginosa , Salmonella typhimurium , Staphylococcus aureus , Orina/microbiología , Adulto , Biopelículas , Reactores Biológicos , Desinfección , Electricidad , Electroquímica , Electrodos , Humanos , Concentración de Iones de Hidrógeno
13.
Bioelectrochemistry ; 126: 146-155, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30597451

RESUMEN

In recent years novel applications of bioelectrochemical systems are exemplified by phototrophic biocathodes, biocompatible enzymatic fuel cells and biodegradable microbial fuel cells (MFCs). Herein, transparent silk fibroin membranes (SFM) with various fibroin content (2%, 4% and 8%) were synthesised and employed as separators in MFCs and compared with standard cation exchange membranes (CEM) as a control. The highest real-time power performance of thin-film SFM was reached by 2%-SFM separators: 25.7 ±â€¯7.4 µW, which corresponds to 68% of the performance of the CEM separators (37.7 ±â€¯3.1 µW). Similarly, 2%-SFM revealed the highest coulombic efficiency of 6.65 ±â€¯1.90%, 74% of the CEM efficiency. Current for 2%-SFM reached 0.25 ±â€¯0.03 mA (86% of CEM control). Decrease of power output was observed after 23 days for 8% and 4% and was a consequence of deterioration of SFMs, determined by physical, chemical and biological studies. This is the first time that economical and transparent silk fibroin polymers were successfully employed in MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Bombyx/química , Fibroínas/química , Membranas Artificiales , Animales , Cationes/química , Electricidad , Electrodos/microbiología , Diseño de Equipo
14.
J Power Sources ; 400: 392-401, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30739982

RESUMEN

Appropriate inoculation and maturation may be crucial for shortening the startup time and maximising power output of Microbial Fuel Cells (MFCs), whilst ensuring stable operation. In this study we explore the relationship between electrochemical parameters of MFCs matured under different external resistance (Rext) values (50â€¯Ω - 10 kΩ) using non-synthetic fuel (human urine). Maturing the biofilm under the lower selected Rext results in improved power performance and lowest internal resistance (Rint), whereas using higher Rext results in increased ohmic losses and inferior performance. When the optimal load is applied to the MFCs following maturity, dependence of microbial activity on original Rext values does not change, suggesting an irreversible effect on the biofilm, within the timeframe of the reported experiments. Biofilm microarchitecture is affected by Rext and plays an important role in MFC efficiency. Presence of water channels, EPS and precipitated salts is distinctive for higher Rext and open circuit MFCs. Correlation analysis reveals that the biofilm changes most dynamically in the first 5 weeks of operation and that fixed Rext lefts an electrochemical effect on biofilm performance. Therefore, the initial conditions of the biofilm development can affect its long-term structure, properties and activity.

15.
Front Energy Res ; 6: 84, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33409273

RESUMEN

One of the challenges in Microbial Fuel Cell (MFC) technology is the improvement of the power output and the lowering of the cost required to scale up the system to reach usable energy levels for real life applications. This can be achieved by stacking multiple MFC units in modules and using cost effective ceramic as a membrane/chassis for the reactor architecture. The main aim of this work is to increase the power output efficiency of the ceramic based MFCs by compacting the design and exploring the ceramic support as the building block for small scale modular multi-unit systems. The comparison of the power output showed that the small reactors outperform the large MFCs by improving the power density reaching up to 20.4 W/m3 (mean value) and 25.7 W/m3 (maximum). This can be related to the increased surface-area-to-volume ratio of the ceramic membrane and a decreased electrode distance. The power performance was also influenced by the type and thickness of the ceramic separator as well as the total surface area of the anode electrode. The study showed that the larger anode electrode area gives an increased power output. The miniaturized design implemented in 560-units MFC stack showed an output up to 245 mW of power and increased power density. Such strategy would allow to utilize the energy locked in urine more efficiently, making MFCs more applicable in industrial and municipal wastewater treatment facilities, and scale-up-ready for real world implementation.

16.
Sens Actuators B Chem ; 244: 815-822, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28579695

RESUMEN

Standard Biological Oxygen Demand (BOD) analysis requires 5 days to complete. To date, microbial fuel cell biosensors used as an alternative method for BOD assessment requires external apparatus, which limits their use for on-line monitoring in remote, off-grid locations. In this study, a self-powered, floating biosensor was developed for online water quality monitoring. This approach eliminated the need for external apparatus and maintenance that would otherwise be required by other techniques. The biosensor was able to detect urine in freshwater and turn ON a visual and sound cues (85 dB). The energy needed to operate the biosensor was produced by the system itself with the use of electroactive microorganisms, inside microbial fuel cells. The Chemical Oxygen Demand (COD) was used as a fast method of biosensor validation. When urine concentration exceeded the lower threshold, corresponding to a COD concentration of 57.7 ± 4.8 mgO2 L-1, the biosensor turned the alarm ON. The shortest observed actuation time, required to switch ON the alarm was 61 min, when the urine concentration was 149.7 ± 1.7 mgO2 L-1. Once the sensor was switched ON, the signal was emitted until the urine organic load decreased to 15.3 ± 1.9 mgO2 L-1. When ON, the microbial fuel cell sensor produced a maximum power of 4.3 mW. When switched OFF, the biosensor produced 25.4 µW. The frequency of the signal was proportional to the concentration of urine. The observed frequencies varied between 0.01 and 0.59 Hz. This approach allowed to correlate and quantitatively detect the presence of water contamination, based on signal frequency. The sensor was operating autonomously for 5 months. This is the first report of a self-powered, autonomous device, developed for online water quality monitoring.

17.
PLoS One ; 12(5): e0176475, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28463976

RESUMEN

Microbial Fuel Cells (MFCs) are emerging as an effective means of treating different types of waste including urine and wastewater. However, the fate of pathogens in an MFC-based system remains unknown, and in this study we investigated the effect of introducing the enteric pathogen Salmonella enterica serovar enteritidis in an MFC cascade system. The MFCs continuously fed with urine showed high disinfecting potential. As part of two independent trials, during which the bioluminescent S. enteritidis strain was introduced into the MFC cascade, the number of viable counts and the level of bioluminescence were reduced by up to 4.43±0.04 and 4.21±0.01 log-fold, respectively. The killing efficacy observed for the MFCs operating under closed-circuit conditions, were higher by 1.69 and 1.72 log-fold reduction than for the open circuit MFCs, in both independent trials. The results indicated that the bactericidal properties of a well performing anode were dependent on power performance and the oxidation-reduction potential recorded for the MFCs. This is the first time that the fate of pathogenic bacteria has been investigated in continuously operating MFC systems.


Asunto(s)
Fuentes de Energía Bioeléctrica , Desinfección/métodos , Orina/microbiología , Fuentes de Energía Bioeléctrica/microbiología , Humanos , Mediciones Luminiscentes/métodos , Salmonella enterica , Salmonella enteritidis , Aguas Residuales/microbiología , Purificación del Agua/métodos
18.
Proteomics ; 16(21): 2764-2775, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27599463

RESUMEN

Anodophilic bacteria have the ability to generate electricity in microbial fuel cells (MFCs) by extracellular electron transfer to the anode. We investigated the anode-specific responses of Shewanella oneidensis MR-1, an exoelectroactive Gammaproteobacterium, using for the first time iTRAQ and 2D-LC MS/MS driven membrane proteomics to compare protein abundances in S. oneidensis when generating power in MFCs, and growing in a continuous culture. The regulated dataset produced was enriched in membrane proteins. Proteins shown to be more abundant in anaerobic electroactive anodic cells included efflux pump TolC and an uncharacterised tetratricopeptide repeat (TPR) protein, whilst the TonB2 system and associated uncharacterised proteins such as TtpC2 and DUF3450 were more abundant in microaerobic planktonic cells. In order to validate the iTRAQ data, the functional role for TolC was examined using a δTolC knockout mutant of S. oneidensis. Possible roles for the uncharacterised proteins were identified using comparative bioinformatics. We demonstrate that employing an insoluble extracellular electron acceptor requires multiple proteins involved in cell surface properties. All MS and processed data are available via ProteomeXchange with identifier PXD004090.


Asunto(s)
Fuentes de Energía Bioeléctrica , Proteómica/métodos , Shewanella/genética , Biopelículas , Electricidad , Electrodos , Transporte de Electrón , Electrones , Shewanella/química , Espectrometría de Masas en Tándem
19.
Appl Energy ; 173: 431-437, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27375317

RESUMEN

Air cathode microbial fuel cells (MFCs) were used in a cascade-system, to treat neat human urine as the fuel. Their long-term operation caused biodeterioration and biofouling of the cathodes. The cathodes were made from two graphite-painted layers, separated by a current collector. The initial performance of the MFCs was reaching average values of 105.5 ± 32.2 µW and current of 1164.5 ± 120.2 µA. After 3 months of operation the power performance decreased to 9.8 ± 3.5 µW, whilst current decreased to 461.2 ± 137.5 µA. Polarisation studies revealed significant transport losses accompanied by a biofilm formation on the cathodes. The alkaline lysis procedure was established to remove the biomass and chemical compounds adsorbed on the cathode's surface. As a result, the current increased from 378.6 ± 108.3 µA to 503.8 ± 95.6 µA. The additional step of replacing the outer layer of the cathode resulted in a further increase of current to 698.1 ± 130 µA. Similarly, the power performance of the MFCs was recovered to the original level reaching 105.3 ± 16.3 µW, which corresponds to 100% recovery. Monitoring bacterial cell number on the cathode's surface showed that biofilm formed during operation was successfully removed and composed mainly of dead bacterial cells after treatment. To the best of the authors' knowledge, this is the first time that the performance of deteriorating cathodes, has been successfully recovered for MFCs in-situ. Through this easy, fast and inexpensive procedure, designing multilayer cathodes may help enhance the range of operating conditions, if a biofilm forms on their surface.

20.
ChemSusChem ; 9(1): 88-96, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26692569

RESUMEN

Microbial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low-cost alternative to commercially available proton exchange membranes. The MFCs operated with fresh human urine as the fuel. Pyrophyllite and earthenware produced the best performance to reach power densities of 6.93 and 6.85 W m(-3), respectively, whereas mullite and alumina achieved power densities of 4.98 and 2.60 W m(-3), respectively. The results indicate the dependence of bio-film growth and activity on the type of ceramic membrane applied. The most favourable conditions were created in earthenware MFCs. The performance of the ceramic membranes was related to their physical and chemical properties determined by environmental scanning electron microscopy and energy dispersive X-ray spectroscopy. The cost of mullite, earthenware, pyrophyllite and alumina was estimated to be 13.61, 4.14, 387.96 and 177.03 GBP m(-2), respectively. The results indicate that earthenware and mullite are good substitutes for commercially available proton exchange membranes, which makes the MFC technology accessible in developing countries.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biopelículas/crecimiento & desarrollo , Cerámica/química , Membranas Artificiales , Silicatos de Aluminio/química , Fuentes de Energía Bioeléctrica/economía , Fuentes de Energía Bioeléctrica/microbiología , Electrodos , Humanos , Microscopía Electrónica de Rastreo , Protones , Aguas del Alcantarillado/microbiología , Espectrometría por Rayos X , Propiedades de Superficie , Orina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...