RESUMEN
Rheumatoid arthritis, a chronic autoimmune disorder characterized by joint inflammation, is thought to be exacerbated by bacterial infections, notably Proteus mirabilis. This study explores the combined effects of quercetin, a potent antioxidant and anti-inflammatory flavonoid, and chondroitin sulfate, known for its cartilage-protective properties, as a potential therapeutic approach. Molecular docking analyses revealed favourable interactions between these compounds and key pro-inflammatory cytokines IL-6 and TNF-α, suggesting their potential to disrupt inflammation-related signaling pathways. In vitro assays demonstrated that the quercetin- chondroitin sulfate combination (1:1 ratio) significantly inhibited oxidative stress and hemolysis, highlighting its enhanced anti-inflammatory and membrane-protective effects. The free radical scavenging assays further confirmed the antioxidant potential of this combination, which demonstrated strong radical scavenging activity. Antimicrobial assays showed notable antibacterial effects, with an increased inhibition zone against P. mirabilis when quercetin and chondroitin sulfate were combined, suggesting a synergistic antimicrobial action. In vivo, zebrafish subjected to bacterial stress showed improved survival rates with the quercetin and chondroitin sulfate combination treatment, along with enhanced mineralization and significant modulation of alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities, indicating its protective role in maintaining joint health. Furthermore, gene expression analysis revealed a substantial reduction in pro-inflammatory markers, including TNF-α and IL-6, demonstrating the quercetin and chondroitin sulfate combination's ability to mitigate inflammation. Together, these findings suggest that the quercetin and chondroitin sulfate combination hold significant therapeutic potential in reducing oxidative stress, inflammation, and microbial-induced RA exacerbations.
RESUMEN
The use of nanotechnology and polymer-based carriers in osteoporosis treatment offers promising avenues for targeted drug delivery and enhanced therapeutic efficacy. In this study, we developed a novel nanoconjugate composed of Chitosan (CH), Chondroitin Sulfate (CS), and Daidzein (DZ) to treat glucocorticoid-induced osteoporosis in an in vivo zebrafish model. The CH-CS-DZ nanoconjugate were synthesized using the ionic gelation method, with a CH: CS ratio of 1:1 and a 3 % DZ concentration was identified as optimal for further analysis. The resulting nanoparticles exhibited a particle size of 401.2 ± 0.87 nm. The polydispersity index (PDI) and zeta potential of nanoconjugate were of 0.147 ± 0.04 and 43.55 ± 0.68 mV respectively. Drug release studies demonstrated that 79.66 ± 4.04 % of DZ was released under physiological conditions (pH 7.5) after 96 h, indicating a sustained release profile beneficial for prolonged therapeutic effects. In vivo, studies using zebrafish larvae revealed a significant reduction in oxidative stress and apoptosis in the CH-CS-DZ treated group compared to the glucorticoid dexamethasone (Dex) treated group. Specifically, reactive oxygen species (ROS) levels were reduced, and lipid peroxidation was markedly decreased (p < 0.001) in the CH-CS-DZ treated group. Additionally, the survival and hatching rates of CH-CS-DZ-treated larvae were 94 % and 95 %, respectively, significantly higher than those in the Dex-treated group. The CH-CS-DZ nanoconjugate also restored bone mineralization, as evidenced by a significant increase in calcium deposition (p < 0.001) and alkaline phosphatase (ALP) activity (122 ± 0.4 U/L), compared to the Dex group (84 ± 0.7 U/L). Gene expression analysis showed upregulation of OPG and ALP and downregulation of RANKL and RUNX2b, further indicating the anti-osteoporotic potential of the CH-CS-DZ nanoconjugates. These findings suggest that polymer-based nanoconjugates like CH-CS-DZ can effectively mitigate osteoporosis through targeted delivery and sustained release, offering a potent strategy for bone health restoration.
RESUMEN
Foodborne pathogens continue to challenge public health due to their ability to cause severe illness and their increasing resistance to current antimicrobial treatments. Listeria monocytogenes is a resilient foodborne pathogen that poses significant risks to vulnerable populations, leading to severe infections and high hospitalization rates. The emergence of antimicrobial-resistant (AMR) strains of L. monocytogenes underscores the need for novel therapeutic strategies. In this study, we investigated the antimicrobial efficacy of the (2E)-3-(3,5-dibromo-2-hydroxylphenyl)-1-(5-methylfuran-2-yl) prop-2-en-1-one (DK06) against multidrug-resistant L. monocytogenes. DK06 exhibited a significant dose-dependent inhibition of L. monocytogenes growth, achieving a maximum inhibition of 92.9 % at 320 µM. Molecular docking and dynamics simulations revealed high binding affinities for key virulence proteins PlcB and ArgA, with stable protein-ligand interactions. DK06 also disrupted biofilm formation at sub-MIC levels, reducing extracellular polymeric substances (EPS) and biofilm mass, as observed by scanning electron microscopy (SEM) analysis. Furthermore, DK06 downregulated the expression of virulence genes (plcB, argA, and hly) and decreased hemolytic activity. In vivo zebrafish studies confirmed the safety of DK06 up to 80 µM, demonstrating its efficacy in reducing mortality and oxidative stress associated with L. monocytogenes infection. DK06 also attenuated inflammation by downregulating key inflammatory markers (tnfa, il1b, il6, and nfkb). These findings indicate that DK06 is a promising multi-target inhibitor with potential application in treating infections and combating antimicrobial resistance.
Asunto(s)
Antibacterianos , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Listeria monocytogenes , Listeriosis , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Pez Cebra , Listeria monocytogenes/efectos de los fármacos , Animales , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Listeriosis/microbiología , Listeriosis/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Virulencia/efectos de los fármacos , Simulación de Dinámica MolecularRESUMEN
The direct-linked coumarin-benzimidazole hybrids, featuring aryl and n-butyl substituents at the N1-position of benzimidazole were synthesized through a Knoevenagel condensation reaction. This reaction involved the condensation of 1,2-diaminobenzene derivatives with coumarin-3-carboxylic acids in the presence of polyphosphoric acid (PPA) at 154 °C. The in vitro antibacterial potency of the hybrid molecules against different gram-positive and gram-negative bacterial strains led to the identification of the hybrids 6m and 6p with a MIC value of 6.25 µg/mL against a gram-negative bacterium, Klebsiella pneumonia ATCC 27736. Cell viability studies on THP-1 cells demonstrated that the compounds 6m and 6p were non-toxic at a concentration of 50 µM. Furthermore, in vivo efficacy studies using a murine neutropenic thigh infection model revealed that both compounds significantly reduced bacterial (Klebsiella pneumonia ATCC 27736) counts (more than 2 log) compared to the control group. Additionally, both compounds exhibited favorable physicochemical properties and drug-likeness characteristics. Consequently, these compounds hold promise as lead candidates for further development of effective antibacterial drugs.
Asunto(s)
Antibacterianos , Bencimidazoles , Cumarinas , Pruebas de Sensibilidad Microbiana , Animales , Humanos , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Bencimidazoles/química , Bencimidazoles/farmacología , Bencimidazoles/síntesis química , Supervivencia Celular/efectos de los fármacos , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Relación Dosis-Respuesta a Droga , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Estructura Molecular , Relación Estructura-ActividadRESUMEN
Herpes simplex virus (HSV) infections affect a wide range of the global population. The emergence of resistance to the existing anti-HSV therapy highlights the necessity for an innovative strategy. The interaction of HSV gD with its main host receptor nectin-1 is a potential target for new antiviral drugs. The aim of this study was to develop a peptide derived from nectin-1 targeting HSV gD using the in-silico method and evaluate them for anti-HSV activity. Residues 59-133 of the Nectin-1 V-domain constitute the interaction interface with HSV gD. Bioinformatic tools viz., PEP-FOLD3, ClusPro 2.0, HawkDock and Desmond were used to model the peptide and confirm its binding specificity with HSV gD protein. The peptides with potential interactions were custom synthesized and anti-HSV activity was evaluated in vitro against HSV-1 and HSV-2 by CPE inhibition assay. Five peptide sequences were identified as exhibiting good interaction with HSV-gD proteins. Among them, peptide N1 (residues 76-90) offered maximum protection against HSV-1 (66.57%) and HSV-2 (71.12%) infections. Modification of the identified peptide through peptidomimetic approaches may further enhance the activity and stability of the identified peptide.Communicated by Ramaswamy H. Sarma.
RESUMEN
The health of the human population has been continuously challenged by viral infections. Herpes simplex virus (HSV) is one of the common causes of illness and can lead to death in immunocompromised patients. Existing anti-HSV therapies are not completely successful in eliminating the infection due to anti-viral drug resistance, ineffectiveness against the latent virus and high toxicity over prolonged use. There is a need to update our knowledge of the current challenges faced in anti-HSV therapeutics and realize the necessity of developing alternative treatment approaches. Protein therapeutics are now being explored as a novel approach due to their high specificity and low toxicity. This review highlights the significance of HSV viral glycoproteins and host receptors in the pathogenesis of HSV infection. Proteins or peptides derived from HSV glycoproteins gC, gB, gD, gH and host cell receptors (HSPG, nectin and HVEM) that act as decoys to inhibit HSV attachment, entry, or fusion have been discussed. Few researchers have tried to improve the efficacy and stability of the identified peptides by modifying them using a peptidomimetic approach. With these efforts, we think developing an alternative treatment option for immunocompromised patients and drug-resistant organisms is not far off.
Asunto(s)
Glicoproteínas , Simplexvirus , Humanos , Simplexvirus/metabolismo , Línea Celular , Glicoproteínas/metabolismo , Péptidos/farmacología , Antivirales/farmacología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismoRESUMEN
According to WHO, to combat the resistant strains, new effective anti-microbial agents are needed on an urgent basis and global researchers should focus their efforts and discovery programs on developing them against antibiotic-resistant pathogens or priority pathogens like ESKAPE. In this context, Cationic antimicrobial peptides (AMPs) are being explored extensively as promising next-generation antimicrobials due to their broad range, fast kinetics and multifunctional role. Despite recent advances, it is still a daunting challenge to identify and design a potent AMP with no cytotoxicity, but with broad specific antimicrobial activity, stability and efficacy under in vivo conditions in a cost-effective and robust manner. In this work, as a proof of concept, we designed novel potent AMPs using artificial intelligence based in silico programs. Shortlisted peptide sequences were synthesized using the fmoc chemistry approach, assessed their antimicrobial activity, cell selectivity, mode of action and in vivo efficacy using a series of experiments. The synthesized peptide analogues demonstrated their antimicrobial activity (MIC in the range of 2.5-80 µM) against bacteria. The identified potential lead molecules showed antibacterial activity in physiological conditions with no signs of cytotoxicity. We further tested the antimicrobial activity of peptide analogues for treating wounds infected with Pseudomonas aeruginosa in the mice burn wound model. In drug-development programs, the identification of lead antimicrobial agents is always challenging and involves screening a large number of molecules which is time-consuming and expensive. This work demonstrates the utility of artificial intelligence based in silico analysis programs in discovering novel antimicrobial agents in an economical, robust way.
RESUMEN
Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes healthcare-associated infection and high mortality in immunocompromised patients. It produces several virulence factors through quorum sensing (QS) mechanisms that is essential for subverting host immune system. Even front-line antibiotics are unable to control PA pathogenicity due to the emergence of antibiotic resistance. Luteolin is a naturally derived compound that has proven to be the effective drug to annihilate pathogens through quorum quenching mechanism. In this study, the protective effect of luteolin against the PA-mediated inflammation was demonstrated using zebrafish model. Luteolin protects zebrafish from PA infection and increases their survival rate. It was found that PA-mediated ROS, lipid peroxidation, and apoptosis were also significantly reduced in luteolin-treated zebrafish larvae. Open field test (OFT) reveals that luteolin rescued PA-infected zebrafish from retarded swimming behavior. Furthermore, luteolin increases SOD and CAT levels and decreases LDH and NO levels in PA-infected zebrafish compare to control group. Histological and gene expression analysis reveals that luteolin protects PA-infected zebrafish by decreasing gut inflammation and altering the expression of inflammatory (TNF-α, IL-1ß, IL-6) and antioxidant markers (iNOS, SOD, CAT). Thus, luteolin was found to have dual effect in protecting PA-infected zebrafish by decreasing virulence factors production in PA and stimulating host immune system. This is the first study demonstrating the protective effect of luteolin using animal model. Hence, luteolin could be used as a future therapeutic drug to control multi-drug resistant PA.
Asunto(s)
Infecciones por Pseudomonas , Factores de Virulencia , Animales , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Pseudomonas aeruginosa , Luteolina/farmacología , Pez Cebra , Percepción de Quorum , Inflamación , Superóxido Dismutasa/metabolismo , Antibacterianos/metabolismo , Biopelículas , Proteínas Bacterianas/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/patologíaRESUMEN
The inhibition/degradation potential of Carissa carandas proteinaceous leaf extract against mixed bacterial biofilm of Staphylococcus aureus MTCC 96, Escherichia coli MTCC 1304, Pseudomonas aeruginosa MTCC 741, and Klebsiella pneumoniae MTCC 109, responsible for nosocomial infections, was evaluated. Distinct inhibition/degradation of mixed bacterial biofilm by the proteinaceous leaf extract of C. carandas was observed under a microscope, and it was found to be 80%. For mono-species biofilm, the maximum degradation of 70% was observed against S. aureus biofilm. The efficiency of aqueous plant extracts to inhibit the mono-species biofilm was observed in terms of minimum inhibitory concentration (MIC), and the best was found against P. aeruginosa (12.5 µg/ml). The presence of flavonoids, phenols, and tannins in the phytochemical analysis of the plant extract suggests the main reason for the antibiofilm property of C. carandas. From the aqueous extract, protein fraction was precipitated using 70% ammonium sulfate and dialyzed. This fraction was purified by ion-exchange chromatography and found to be stable and active at 10°C (pH 7). The purified fraction showed less than 40% cytotoxicity, which suggests that it can be explored for therapeutic purposes after in-depth testing. In order to investigate the mechanistic action of the biofilm inhibition, the plant protein was tested against Chromobacterium violaceum CV026, and its inhibitory effect confirmed its quorum quenching nature. Based on these experimental analyses, it can be speculated that the isolated plant protein might influence the signaling molecule that leads to the inhibition effect of the mixed bacterial biofilm. Further experimental studies are warranted to validate our current findings.
Asunto(s)
Apocynaceae , Percepción de Quorum , Antibacterianos/química , Bacterias , Biopelículas , Extractos Vegetales , Proteínas de Plantas/farmacología , Pseudomonas aeruginosa , Staphylococcus aureus , VirulenciaRESUMEN
Coronavirus disease 2019 (COVID-19) is a potential health threat in the highly mobile society of the world. There are also concerns regarding the occurrence of co-infections occurring in COVID-19 patients. Herpes zoster (HZ) is currently being reported as a co-infection in COVID-19 patients. It is a varicella-zoster virus induced viral infection affecting older and immunocompromised individuals. Reactivation of HZ infection in COVID-19 patients are emerging and the mechanism of reactivation is still unknown. The most convincing argument is that increased psychological and immunological stress leads to HZ in COVID-19 patients; this review justifies this argument.
Asunto(s)
COVID-19 , Herpes Zóster , Herpes Zóster/complicaciones , Herpes Zóster/epidemiología , Herpesvirus Humano 3 , Humanos , Huésped InmunocomprometidoRESUMEN
The Indus-Ganga-Brahmaputra River Basin (IGBRB) is a trans-boundary river basin flowing through four major countries in South Asia viz., India, Pakistan, Bangladesh, and Nepal. Contamination of surface water by untreated or inadequately treated wastewater has been a huge problem for pathogenic microorganisms in economies in transition. Recent studies have reported that sewage surveillance can provide prior information of the outbreak data, because faeces can contain the novel coronavirus (SARS-CoV-2) shed by infected humans. Hence, in this study we geo-spatially mapped the COVID-19 hotspots during the peak time in the first and second wave of pandemic to demonstrate the need and usefulness of wastewater surveillance strategy in IGBRB during ongoing pandemic. Further we discussed the status of sanitation, health and hand-hygiene in the IGBRB along with characterization of the challenges posed by the pandemic in achieving the United Nations Sustainable Development Goals (UN-SDGs). Monthly Geographical Information System (GIS) mapping of COVID-19 hotspots in the IGBRB showed an increase in the spread along the direct sewage discharge points. The social inequalities expose the vulnerabilities of the urban poor in terms of the burden, risks and access to Water, Sanitation, and Hygiene (WASH) needs. Such an evidence-based image of the actual SARS-CoV-2 viral load in the community along the IGBRB can provide valuable insights and recommendations to deal with the future waves of COVID-19 pandemic in this region that can go a long way in achieving the UN-SDGs.
RESUMEN
Worldwide, TB is one of the deadly airborne diseases, which accounts for 10.4 million deaths annually. Serious toxicity issue, prolonged treatment regimens of the current drugs, rise in multidrug-resistant strains, and the unique defensive mechanism makes the development of novel therapeutic molecules against Mycobacterium tuberculosis (MT) an urgent need. As MT has a lengthy latent phase and unique cell wall architecture, a reasonable approach is needed to find molecules having a different killing mechanism rather than traditional approaches. Host defence peptides (HDPs) will be the most promising alternative, potential therapeutic candidates as they target the microbial membrane in particular and are an essential part of the innate immunity of humans. This works demonstrates the utility of "Database filtering" and three-dimensional (3D) modelling approach in finding novel AMPs with appreciable activity towards MT. Results of this study indicate that peptides with 70% hydrophobicity, but without hydrophobicity patches (> 4 hydrophobic amino acids in series) and charge of + 4 or + 5 are most likely to be good anti-tubercular candidates.
Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Péptidos Catiónicos Antimicrobianos , Antituberculosos/farmacología , HumanosRESUMEN
In this study, we have identified a novel peptide NV14 with antioxidative functions from serine O-acetyltransferase (SAT) of Artrospira platensis (Ap). The full sequence of ApSAT and its derived NV14 peptide "NVRIGAGSVVLRDV" (141-154) was characterized using bioinformatics tools. To address the transcriptional activity of ApSAT in response to induce generic oxidative stress, the spirulina culture was exposed to H2 O2 (10 mM). The ApSAT expression was studied using RT-PCR across various time points and it was found that the expression of the ApSAT was significantly upregulated on Day 15. The in vitro cytotoxicity assay against NV14 was performed in human dermal fibroblast cells and human blood leukocytes. Results showed that NV14 treatment was non-cytotoxic to the cells. Besides, in vivo treatment of NV14 in zebrafish larvae did not exhibit the signs of developmental toxicity. Further, the in vitro antioxidant assays enhanced the activity of the antioxidant enzymes, such as SOD and CAT, due to NV14 treatment; and also significantly reduced the MDA levels, while increasing the superoxide radical and H2 O2 scavenging activity. The expression of antioxidant enzyme genes glutathione peroxidase, γ-glutamyl cysteine synthase, and glutathione S-transferase were found to be upregulated in the NV14 peptide pretreated zebrafish larvae when induced with generic oxidative stress, H2 O2 . Overall, the study showed that NV14 peptide possessed potent antioxidant properties, which were demonstrated over both in vitro and in vivo assays. NV14 enhanced the expression of antioxidant enzyme genes at the molecular level, thereby modulating and reversing the cellular antioxidant balance disrupted due to the H2 O2 -induced oxidative stress.
Asunto(s)
Antioxidantes/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Serina O-Acetiltransferasa/genética , Animales , Antioxidantes/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Peróxido de Hidrógeno/farmacología , Larva/metabolismo , Estrés Oxidativo/efectos de los fármacos , Péptidos , Serina O-Acetiltransferasa/metabolismo , Superóxido Dismutasa/metabolismo , Pez Cebra/genéticaRESUMEN
Several studies have reported the release of halogenated persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) associated with open burning of municipal solid waste. Considering soil as a sink for such organic contaminants, we conducted an in-depth study on the surface soil concentrations of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs) and sixteen USEPA enlisted PAHs collected from thirteen zones of the two major municipal dumpsites, Kodungaiyur dumpsite (KDS) and Perungudi dumpsite (PDS) of Chennai city. Indigenous microbes from dumpsite soil samples were isolated and identified based on 16S rRNA sequencing and phylogenetic analysis. Using indigenous microbes, we have elucidated the bioavailability of the targeted organic pollutants for each site.Range of Σ17PCDD/Fs, Σ25PCBs and ∑16PAHs varied between 3.96-612 pg/g (96.0 pg/g; median), ND-182 ng/g (6.35 ng/g; median) and 0.62-3649 ng/g (64.3 ng/g; median), respectively. All the dumpsite samples showed bioavailability for POPs and PAHs. Toxicity equivalent values (TEQs) associated with dioxin-like PCBs and PCDD/Fs from the zones where dumped municipal solid wastes were collected from electronic-waste/IT-corridor/port areas and toxic PAHs from the zone receiving wastes from the industrial corridor of the city were higher than the soil permissible limit prescribed by the World Health Organization.
Asunto(s)
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Hidrocarburos Policíclicos Aromáticos , Disponibilidad Biológica , Dibenzofuranos , Dibenzofuranos Policlorados , Furanos , India , Filogenia , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , ARN Ribosómico 16S , SueloRESUMEN
Surveillance of SARS-CoV-2 and organic tracers (OTs) were conducted in the community wastewater of Chennai city and the suburbs, South India, during partial and post lockdown phases (August-September 2020) as a response to the coronavirus disease 2019 (COVID-19) pandemic. Wastewater samples were collected from four sewage treatment plants (STPs), five sewage pumping stations (SPSs) and at different time intervals from a suburban hospital wastewater (HWW). Four different methods of wastewater concentrations viz., composite (COM), supernatant (SUP), sediment (SED), and syringe filtration (SYR) were subjected to quantitative real time-polymerase chain reaction (qRT-PCR). Unlike HWW, STP inlet, sludge and SPS samples were found with higher loading of SARS-CoV-2 by SED followed by SUP method. Given the higher levels of dissolved and suspended solids in STPs and SPSs over HWW, we suspect that this enveloped virus might exhibit the tendency of higher partitioning in solid phase. Cycle threshold (Ct) values were < 30 in 50% of the HWW samples indicating higher viral load from the COVID-19 infected patients. In the STP outlets, a strict decline of biochemical oxygen demand, >95% removal of caffeine, and absence of viral copies reflect the efficiency of the treatment plants in Chennai city. Among the detected OTs, a combination of maximum dynamic range and high concurrence percentage was observed for caffeine and N1 gene of SARS-CoV-2. Hence, we suggest that caffeine can be used as an indicator for the removal of SARS-CoV-2 by STPs. Our predicted estimated number of cases are in line with the available clinical data from the catchments. Densely distributed population of the Koyambedu catchment could be partly responsible for the high proportion of estimated infected individuals during the study period.
Asunto(s)
COVID-19 , SARS-CoV-2 , Ciudades , Control de Enfermedades Transmisibles , Humanos , India , Aguas ResidualesRESUMEN
Development of antimicrobial drugs against multidrug-resistant (MDR) bacteria is a great focus in recent years. TG12, a short peptide molecule used in this study was screened from tachykinin (Tac) protein of an established teleost Channa striatus (Cs) transcriptome. Tachykinin cDNA has 345 coding sequence, that denotes a protein contained 115 amino acids; in which a short peptide (TG12) was identified at 83-94. Tachykinin mRNA upregulated in C. striatus treated with Aeromonas hydrophila and Escherichia coli lipopolysaccharide (LPS). The mRNA up-regulation was studied using real-time PCR. The up-regulation tachykinin mRNA pattern confirmed the immune involvement of tachykinin in C. striatus during infection. Further, the identified peptide, TG12 was synthesized and its toxicity was demonstrated in hemolytic and cytotoxic assays using human erythrocytes and human dermal fibroblast cells, respectively. The toxicity study exhibited that the toxicity of TG12 was similar to negative control, phosphate buffer saline (PBS). Moreover, the antibiogram of TG12 was active against Klebsiella pneumonia ATCC 27736, a major MDR bacterial pathogen. Further, the antimicrobial activity of TG12 against pathogenic bacteria was screened using minimum inhibitory concentration (MIC) and anti-biofilm assays, altogether TG12 showed potential activity against K. pneumonia. Fluorescence assisted cell sorter flow cytometer analysis (FACS) and field emission scanning electron microscopy (FESEM) was carried on TG12 with K. pneumonia; the results showed that TG12 significantly reduced K. pneumonia viability as well as TG12 disrupt its membrane. In conclusion, TG12 of CsTac is potentially involved in the antibacterial immune mechanisms, which has a prospectus efficiency in pharma industry against MDR strains, especially K. pneumonia.
Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Taquicininas/farmacologíaRESUMEN
Antioxidant peptides are naturally present in food, especially in fishes, and are considered to contain rich source of various bioactive compounds that are structurally heterogeneous. This study aims to identify and characterize the antioxidant property of the WL15 peptide, derived from Cysteine and glycine-rich protein 2 (CSRP2) identified from the transcriptome of a freshwater food fish, Channa striatus. C. striatus is already studied to contain high levels of amino acids and fatty acids, besides traditionally known for its pharmacological benefits in the Southeast Asian region. In our study, in vitro analysis of WL15 peptide exhibited strong free radical scavenging activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), superoxide anion radical and hydrogen peroxide (H2O2) scavenging assay. Further, to evaluate the cytotoxicity and dose-response, the Human dermal fibroblast (HDF) cells were used. Results showed that the treatment of HDF cells with varying concentrations (10, 20, 30, 40 and 50 µM) of WL15 peptide was not cytotoxic. However, the treatment concentrations showed enhanced antioxidant properties by significantly inhibiting the levels of free radicals. For in vivo assessment, we have used zebrafish larvae for evaluating the developmental toxicity and for determining the antioxidant property of the WL15 peptide. Zebrafish embryos were treated with the WL15 peptide from 4 h of post-fertilization (hpf) to 96 hpf covering the embryo-larval developmental period. At the end of the exposure period, the larvae were exposed to H2O2 (1 mM) for inducing generic oxidative stress. The exposure of WL15 peptide during the embryo-larval period showed no developmental toxicity even in higher concentrations of the peptide. Besides, the WL15 peptide considerably decreased the intracellular reactive oxygen species (ROS) levels induced by H2O2 exposure. WL15 peptide also inhibited the H2O2-induced caspase 3-dependent apoptotic response in zebrafish larvae was observed using the whole-mount immunofluorescence staining. Overall results from our study showed that the pre-treatment of WL15 (50 µM) in the H2O2-exposed zebrafish larvae, attenuated the expression of activated caspase 3 expressions, reduced Malondialdehyde (MDA) levels, and enhanced antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT). The gene expression of antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxide (GPx) and γ-glutamyl cysteine synthetase (GCS) was found to be upregulated. In conclusion, it can be conceived that pre-treatment with WL15 could mitigate H2O2-induced oxidative injury by elevating the activity and expression of antioxidant enzymes, thereby decreasing MDA levels and cellular apoptosis by enhancing the antioxidant response, demonstrated by the in vitro and in vivo experiments.
Asunto(s)
Dermis , Fibroblastos , Depuradores de Radicales Libres , Proteínas Musculares , Péptidos , Proteínas de Pez Cebra , Pez Cebra , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Células Cultivadas , Dermis/citología , Embrión no Mamífero , Desarrollo Embrionario , Fibroblastos/inmunología , Depuradores de Radicales Libres/metabolismo , Larva , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Estrés Oxidativo , Péptidos/genética , Péptidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
A new series of triazole-thiazole hybrids were designed, synthesized by the Multi-component reaction approach and evaluated in vitro antimicrobial activity. Most of the tested series of compounds exhibited promising inhibitory activity against the bacterial strains with values in the range of 2.8 to 15.7 µM. The compounds 8i-8l and 8r showed potential-Candida activity against various Candida strains with spectrum values in the range 5.9-14.2 µM. Further, anti-biofilm and toxicity profiles for the potent compounds were also tested, and it was observed that the compounds 8i, 8k, and 8l were found to inhibit the biofilm formation with IC50 values of 6.6, 16.6 and 15.9 µM, respectively against Bacillus subtilis MTCC 121. Besides, 8k and 8l also displayed promising biofilm formation inhibitory activity towards Staphylococcus aureus MTCC 96 with IC50 values of 13.5 and 12.0 µM respectively. In summary, the activity results has emphasized the compounds 8k and 8l as potential leads for further development of antibacterial, anti-Candida, and anti-biofilm agents.
Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Tiazoles/farmacología , Triazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Bacillus subtilis/efectos de los fármacos , Biopelículas/efectos de los fármacos , Candida/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/química , Triazoles/químicaRESUMEN
The antioxidant role of sulfite reductase (SiR) derived from Arthrospira platensis (Ap) was identified through a short peptide, TL15. The study showed that the expression of ApSiR was highly expressed on day ten due to sulfur deprived stress in Ap culture. TL15 peptide exhibited strong antioxidant activity when evaluated using antioxidant assays in a concentration ranging from 7.8 and 125 µM. Further, the cytotoxicity of TL15 peptide was investigated, even at the higher concentration (250 µM), TL15 did not exhibit any toxicity, when tested in vitro using human leucocytes. Moreover, a potential reduction in reactive oxygen species (ROS) production was observed due to the treatment of TL15 peptide (>15.6 µM) to H2O2 exposed leucocytes. For the in vivo assessment of TL15 toxicity and antioxidant ability, experiments were performed in zebrafish (Danio rerio) larvae to analyse the developmental toxicity of TL15 peptide. Results showed that, exposure to TL15 peptide in tested concentrations ranging from 10, 20, 40, and 80 µM, did not affect the development and physiological parameters of the zebrafish embryo/larvae such as morphology, survival, hatching and heart rate. Fluorescent assay was performed using DCFH-DA (2,7-dichlorodihydrofluorescein diacetate) to examine the production of intracellular reactive oxygen species (ROS) in zebrafish treated with TL15 peptide during the embryo-larval stages. Fluorescent images showed that pre-treatment with TL15 peptide to attenuate the H2O2 induced ROS levels in the zebrafish larvae in a dose-dependent manner. Further to uncover the underlying biochemical and antioxidant mechanism, the enzyme activity of superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPO) levels were studied in zebrafish larvae. TL15 pre-treated groups showed enhanced antioxidant enzyme activity, while the hydrogen peroxide (H2O2) exposed larvae showed significantly diminished activity. Overall results from the study revealed that, TL15 act as a potential antioxidant molecule with dose-specific antioxidant property. Thus, TL15 peptide could be an effective and promising source for biopharmaceutical applications.