Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 59(6): 1359-1385, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38154805

RESUMEN

Candidate drugs targeting the central nervous system (CNS) demonstrate extremely low clinical success rates, with more than 98% of potential treatments being discontinued due to poor blood-brain barrier (BBB) permeability. Neurological conditions were shown to be the second leading cause of death globally in 2016, with the number of people currently affected by neurological disorders increasing rapidly. This increasing trend, along with an inability to develop BBB permeating drugs, is presenting a major hurdle in the treatment of CNS-related disorders, like dementia. To overcome this, it is necessary to understand the structure and function of the BBB, including the transport of molecules across its interface in both healthy and pathological conditions. The use of CNS drug carriers is rapidly gaining popularity in CNS research due to their ability to target BBB transport systems. Further research and development of drug delivery vehicles could provide essential information that can be used to develop novel treatments for neurological conditions. This review discusses the BBB and its transport systems and evaluates the potential of using nanoparticle-based delivery systems as drug carriers for CNS disease with a focus on dementia.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Demencia , Humanos , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Portadores de Fármacos/uso terapéutico , Transporte Biológico , Demencia/tratamiento farmacológico
2.
Cancer Res ; : OF1-OF17, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37195023

RESUMEN

Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9 to 11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA mutations showed increased sensitivity to ONC201, whereas those harboring TP53 mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992. SIGNIFICANCE: PI3K/Akt signaling promotes metabolic adaptation to ONC201-mediated disruption of mitochondrial energy homeostasis in diffuse intrinsic pontine glioma, highlighting the utility of a combination treatment strategy using ONC201 and the PI3K/Akt inhibitor paxalisib.

3.
Cancer Res ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37145169

RESUMEN

Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9-11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA-mutations showed increased sensitivity to ONC201, while those harboring TP53-mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992.

4.
Biochem Soc Trans ; 51(2): 613-626, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36929707

RESUMEN

A healthy brain is protected by the blood-brain barrier (BBB), which is formed by the endothelial cells that line brain capillaries. The BBB plays an extremely important role in supporting normal neuronal function by maintaining the homeostasis of the brain microenvironment and restricting pathogen and toxin entry to the brain. Dysfunction of this highly complex and regulated structure can be life threatening. BBB dysfunction is implicated in many neurological diseases such as stroke, Alzheimer's disease, multiple sclerosis, and brain infections. Among other mechanisms, inflammation and/or flow disturbances are major causes of BBB dysfunction in neurological infections and diseases. In particular, in ischaemic stroke, both inflammation and flow disturbances contribute to BBB disruption, leading to devastating consequences. While a transient or minor disruption to the barrier function could be tolerated, chronic or a total breach of the barrier can result in irreversible brain damage. It is worth noting that timing and extent of BBB disruption play an important role in the process of any repair of brain damage and treatment strategies. This review evaluates and summarises some of the latest research on the role of the BBB during neurological disease and infection with a focus on the effects of inflammation and flow disturbances on the BBB. The BBB's crucial role in protecting the brain is also the bottleneck in central nervous system drug development. Therefore, innovative strategies to carry therapeutics across the BBB and novel models to screen drugs, and to study the complex, overlapping mechanisms of BBB disruption are urgently needed.


Asunto(s)
Isquemia Encefálica , Enfermedades del Sistema Nervioso , Accidente Cerebrovascular , Humanos , Barrera Hematoencefálica/fisiología , Células Endoteliales , Inflamación
6.
Methods Mol Biol ; 2492: 131-142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733042

RESUMEN

The availability of good in vitro blood-brain barrier (BBB) models that closely mimic in vivo BBB features are essential for central nervous system (CNS) drug permeability screening and BBB functionality studies. Of the currently available monoculture primary BBB models, porcine brain endothelial cell models have the best barrier properties, which make them highly suitable for CNS drug permeability screening. In addition, they retain major BBB features such as BBB transporters, receptors, and enzymes and express BBB tight junctions. Therefore, porcine BBB models are also suitable for BBB functionality studies. This paper describes a procedure for extraction of brain microvessels from fresh porcine brains and the culture of pure primary porcine brain endothelial cells. In addition, techniques to improve culture purity and quality, and increase barrier tightness without using co-cultures are given. Using this method, a robust and reproducible in vitro BBB model can be established for CNS permeability screening and studying BBB functionality.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Animales , Células Cultivadas , Fármacos del Sistema Nervioso Central , Técnicas de Cocultivo , Permeabilidad , Porcinos , Uniones Estrechas
8.
Brain Sci ; 11(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34942890

RESUMEN

BACKGROUND: Elevated intracranial pressure (ICP) occurs 18-24 h after ischaemic stroke and is implicated as a potential cause of early neurological deterioration. Increased resistance to cerebrospinal fluid (CSF) outflow after ischaemic stroke is a proposed mechanism for ICP elevation. Ultra-short duration hypothermia prevents ICP elevation 24 h post-stroke in rats. We aimed to determine whether hypothermia would reduce CSF outflow resistance post-stroke. METHODS: Transient middle cerebral artery occlusion was performed, followed by gradual cooling to 33 °C. At 18 h post-stroke, CSF outflow resistance was measured using a steady-state infusion method. RESULTS: Hypothermia to 33 °C prevented ICP elevation 18 h post-stroke (hypothermia ∆ICP = 0.8 ± 3.6 mmHg vs. normothermia ∆ICP = 4.4 ± 2.0 mmHg, p = 0.04) and reduced infarct volume 24 h post-stroke (hypothermia = 78.6 ± 21.3 mm3 vs. normothermia = 108.1 ± 17.8 mm3; p = 0.01). Hypothermia to 33 °C did not result in a significant reduction in CSF outflow resistance compared with normothermia controls (0.32 ± 0.36 mmHg/µL/min vs. 1.07 ± 0.99 mmHg/µL/min, p = 0.06). CONCLUSIONS: Hypothermia treatment was protective in terms of ICP rise prevention, infarct volume reduction, and may be implicated in CSF outflow resistance post-stroke. Further investigations are warranted to elucidate the mechanisms of ICP elevation and hypothermia treatment.

9.
Sci Rep ; 11(1): 22354, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785754

RESUMEN

Reperfusion therapies re-establish blood flow after arterial occlusion and improve outcome for ischaemic stroke patients. Intracranial pressure (ICP) elevation occurs 18-24 h after experimental stroke. This elevation is prevented by short-duration hypothermia spanning the time of reperfusion. We aimed to determine whether hypothermia-rewarming completed prior to reperfusion, also prevents ICP elevation 24 h post-stroke. Transient middle cerebral artery occlusion was performed on male outbred Wistar rats. Sixty-minute hypothermia to 33 °C, followed by rewarming was induced prior to reperfusion in one group, and after reperfusion in another group. Normothermia controls received identical anaesthesia protocols. ΔICP from pre-stroke to 24 h post-stroke was measured, and infarct volumes were calculated. Rewarming pre-reperfusion prevented ICP elevation (ΔICP = 0.3 ± 3.9 mmHg vs. normothermia ΔICP = 5.2 ± 2.1 mmHg, p = 0.02) and reduced infarct volume (pre-reperfusion = 78.6 ± 23.7 mm3 vs. normothermia = 125.1 ± 44.3 mm3, p = 0.04) 24 h post-stroke. There were no significant differences in ΔICP or infarct volumes between hypothermia groups rewarmed pre- or post-reperfusion. Hypothermia during reperfusion is not necessary for prevention of ICP rise or infarct volume reduction. Short-duration hypothermia may be an applicable early treatment strategy for stroke patients prior to- during-, and after reperfusion therapy.


Asunto(s)
Hipotermia Inducida , Hipertensión Intracraneal , Accidente Cerebrovascular Isquémico , Animales , Hipertensión Intracraneal/etiología , Hipertensión Intracraneal/fisiopatología , Hipertensión Intracraneal/prevención & control , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/terapia , Masculino , Ratas , Ratas Wistar , Reperfusión
10.
Front Neurol ; 12: 684353, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616350

RESUMEN

There is a transient increase in intracranial pressure (ICP) 18-24 h after ischaemic stroke in rats, which is prevented by short-duration hypothermia using rapid cooling methods. Clinical trials of long-duration hypothermia have been limited by feasibility and associated complications, which may be avoided by short-duration cooling. Animal studies have cooled faster than is achievable in patients. We aimed to determine whether gradual cooling at a rate of 2°C/h to 33°C or 1°C/h to 34.5°C, with a 30 min duration at target temperatures, prevented ICP elevation and reduced infarct volume in rats. Transient middle cerebral artery occlusion was performed, followed by gradual cooling to target temperature. Hypothermia to 33°C prevented significant ICP elevation (hypothermia ΔICP = 1.56 ± 2.26 mmHg vs normothermia ΔICP = 8.93 ± 4.82 mmHg; p = 0.02) and reduced infarct volume (hypothermia = 46.4 ± 12.3 mm3 vs normothermia = 85.0 ± 17.5 mm3; p = 0.01). Hypothermia to 34.5°C did not significantly prevent ICP elevation or reduce infarct volume. We showed that gradual cooling to 33°C, at cooling rates achievable in patients, had the same ICP preventative effect as traditional rapid cooling methods. This suggests that this paradigm could be translated to prevent delayed ICP rise in stroke patients.

11.
Brain Sci ; 11(9)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34573139

RESUMEN

BACKGROUND: Cerebrospinal fluid (CSF) secretion can be targeted to reduce elevated intracranial pressure (ICP). Sodium-potassium-chloride cotransporter 1 (NKCC1) antagonism is used clinically. However, supporting evidence is limited. The transient receptor potential vanilloid-4 (TRPV4) channel may also regulate CSF secretion and ICP elevation. We investigated whether antagonism of these proteins reduces CSF secretion. METHODS: We quantified CSF secretion rates in male Wistar rats. The cerebral aqueduct was blocked with viscous mineral oil, and a lateral ventricle was cannulated. Secretion rate was measured at baseline and after antagonist administration. Acetazolamide was administered as a positive control to confirm changes in CSF secretion rates. RESULTS: Neither NKCC1, nor TRPV4 antagonism altered CSF secretion rate from baseline, n = 3, t(2) = 1.14, p = 0.37, and n = 4, t(3) = 0.58, p = 0.6, respectively. Acetazolamide reduced CSF secretion by ~50% across all groups, n = 7, t(6) = 4.294, p = 0.005. CONCLUSIONS: Acute antagonism of NKCC1 and TRPV4 proteins at the choroid plexus does not reduce CSF secretion in healthy rats. Further investigation of protein changes and antagonism should be explored in neurological disease where increased CSF secretion and ICP are observed before discounting the therapeutic potential of protein antagonism at these sites.

12.
Front Mol Neurosci ; 14: 712779, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434088

RESUMEN

Oedema-independent intracranial pressure (ICP) rise peaks 20-22-h post-stroke in rats and may explain early neurological deterioration. Cerebrospinal fluid (CSF) volume changes may be involved. Cranial CSF clearance primarily occurs via the cervical lymphatics and movement into the spinal portion of the cranio-spinal compartment. We explored whether impaired CSF clearance at these sites could explain ICP rise after stroke. We recorded ICP at baseline and 18-h post-stroke, when we expect changes contributing to peak ICP to be present. CSF clearance was assessed in rats receiving photothrombotic stroke or sham surgery by intraventricular tracer infusion. Tracer concentration was quantified in the deep cervical lymph nodes ex vivo and tracer transit to the spinal subarachnoid space was imaged in vivo. ICP rose significantly from baseline to 18-h post-stroke in stroke vs. sham rats [median = 5 mmHg, interquartile range (IQR) = 0.1-9.43, n = 12, vs. -0.3 mmHg, IQR = -1.9-1.7, n = 10], p = 0.03. There was a bimodal distribution of rats with and without ICP rise. Tracer in the deep cervical lymph nodes was significantly lower in stroke with ICP rise (0 µg/mL, IQR = 0-0.11) and without ICP rise (0 µg/mL, IQR = 0-4.47) compared with sham rats (4.17 µg/mL, IQR = 0.74-8.51), p = 0.02. ICP rise was inversely correlated with faster CSF transit to the spinal subarachnoid space (R = -0.59, p = 0.006, Spearman's correlation). These data suggest that reduced cranial clearance of CSF via cervical lymphatics may contribute to post-stroke ICP rise, partially compensated via increased spinal CSF outflow.

13.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924191

RESUMEN

Transient or permanent loss of tissue perfusion due to ischaemic stroke can lead to damage to the neurovasculature, and disrupt brain homeostasis, causing long-term motor and cognitive deficits. Despite promising pre-clinical studies, clinically approved neuroprotective therapies are lacking. Most studies have focused on neurons while ignoring the important roles of other cells of the neurovascular unit, such as astrocytes and pericytes. Astrocytes are important for the development and maintenance of the blood-brain barrier, brain homeostasis, structural support, control of cerebral blood flow and secretion of neuroprotective factors. Emerging data suggest that astrocyte activation exerts both beneficial and detrimental effects following ischaemic stroke. Activated astrocytes provide neuroprotection and contribute to neurorestoration, but also secrete inflammatory modulators, leading to aggravation of the ischaemic lesion. Astrocytes are more resistant than other cell types to stroke pathology, and exert a regulative effect in response to ischaemia. These roles of astrocytes following ischaemic stroke remain incompletely understood, though they represent an appealing target for neurovascular protection following stroke. In this review, we summarise the astrocytic contributions to neurovascular damage and repair following ischaemic stroke, and explore mechanisms of neuroprotection that promote revascularisation and neurorestoration, which may be targeted for developing novel therapies for ischaemic stroke.


Asunto(s)
Astrocitos/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Animales , Acuaporina 4/genética , Acuaporina 4/metabolismo , Biomarcadores , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/patología , Circulación Cerebrovascular , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Humanos , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/terapia , Neovascularización Patológica , Neurogénesis , Neuroglía/metabolismo , Neuronas/metabolismo , Neuroprotección
14.
Open Biol ; 11(4): 200396, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33878948

RESUMEN

Atrial fibrillation (AF) has become one of the most significant health problems worldwide, warranting urgent answers to currently pending questions on the effects of AF on brain function. Recent evidence has emerged to show an association between AF and an increased risk of developing dementia and worsening of stroke outcomes. A healthy brain is protected by the blood-brain barrier (BBB), which is formed by the endothelial cells that line cerebral capillaries. These endothelial cells are continuously exposed to shear stress (the frictional force generated by blood flow), which affects endothelial cell structure and function. Flow disturbances as experienced during AF can disrupt the BBB and leave the brain vulnerable to damage. Investigating the plausible mechanisms in detail, linking AF to cerebrovascular damage is difficult in humans, leading to paucity of available clinical data. Here, we discuss the available evidence for BBB disruption during AF due to altered cerebral blood flow, and how this may contribute to an increased risk of dementia and worsening of stroke outcomes.


Asunto(s)
Fibrilación Atrial/complicaciones , Barrera Hematoencefálica/metabolismo , Demencia/etiología , Demencia/metabolismo , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/metabolismo , Animales , Biomarcadores , Barrera Hematoencefálica/patología , Circulación Cerebrovascular , Cognición , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Demencia/epidemiología , Demencia/patología , Susceptibilidad a Enfermedades , Hemodinámica , Humanos , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/patología
15.
J Vis Exp ; (169)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33749683

RESUMEN

Therapeutic hypothermia (TH) is a powerful neuroprotective strategy that has provided robust evidence for neuroprotection in pre-clinical studies of neurological disorders. Despite strong pre-clinical evidence, TH has not shown efficacy in clinical trials of most neurological disorders. The only successful trials employing therapeutic hypothermia were related to cardiac arrest in adults and hypoxic ischemic injury in neonates. Further investigations into the parameters of its use, and study design comparisons between pre-clinical and clinical studies, are warranted. This article demonstrates two methods of short-duration hypothermia induction. The first method allows for rapid hypothermia induction in rats using ethanol spray and fans. This method works by cooling the skin, which has been less commonly used in clinical trials and may have different physiological effects. Cooling is much more rapid with this technique than is achievable in human patients due to differences in surface area to volume ratio. Along with this, a second method is also presented, which allows for a clinically achievable cooling rate for short-duration hypothermia. This method is easy to implement, reproducible and does not require active skin cooling.


Asunto(s)
Hipotermia Inducida , Animales , Frío , Masculino , Modelos Animales , Ratas Wistar , Piel , Factores de Tiempo
16.
Fluids Barriers CNS ; 16(1): 9, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30967147

RESUMEN

The fine balance between the secretion, composition, volume and turnover of cerebrospinal fluid (CSF) is strictly regulated. However, during certain neurological diseases, this balance can be disrupted. A significant disruption to the normal CSF circulation can be life threatening, leading to increased intracranial pressure (ICP), and is implicated in hydrocephalus, idiopathic intracranial hypertension, brain trauma, brain tumours and stroke. Yet, the exact cellular, molecular and physiological mechanisms that contribute to altered hydrodynamic pathways in these diseases are poorly defined or hotly debated. The traditional views and concepts of CSF secretion, flow and drainage have been challenged, also due to recent findings suggesting more complex mechanisms of brain fluid dynamics than previously proposed. This review evaluates and summarises current hypotheses of CSF dynamics and presents evidence for the role of impaired CSF dynamics in elevated ICP, alongside discussion of the proteins that are potentially involved in altered CSF physiology during neurological disease. Undoubtedly CSF secretion, absorption and drainage are important aspects of brain fluid homeostasis in maintaining a stable ICP. Traditionally, pharmacological interventions or CSF drainage have been used to reduce ICP elevation due to over production of CSF. However, these drugs are used only as a temporary solution due to their undesirable side effects. Emerging evidence suggests that pharmacological targeting of aquaporins, transient receptor potential vanilloid type 4 (TRPV4), and the Na+-K+-2Cl- cotransporter (NKCC1) merit further investigation as potential targets in neurological diseases involving impaired brain fluid dynamics and elevated ICP.


Asunto(s)
Líquido Cefalorraquídeo , Hidrodinámica , Presión Intracraneal/fisiología , Enfermedades del Sistema Nervioso/fisiopatología , Animales , Humanos
17.
Mol Cell Neurosci ; 89: 60-70, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29635016

RESUMEN

Japanese encephalitis virus (JEV) remains a leading cause of encephalitis, globally, which continues to grow in importance despite the availability of vaccines. Viral entry into the brain can occur via the blood-brain barrier (BBB), and inflammation at the BBB is a common final pathway in many brain infections. However, the role of the BBB during JEV infection and the contribution of the endothelial and astrocytic cell inflammation in facilitating virus entry into the brain are incompletely understood. We established a BBB model using human brain endothelial cells (HBECs) and human astrocytes. HBECs are polarised, and therefore the model was inoculated by JEV from the apical side to simulate the in vivo situation. The effects of JEV on the BBB permeability and release of inflammatory mediators from both apical and basolateral sides, representing the blood and the brain side respectively were investigated. JEV infected HBECs with limited active virus production, before crossing the BBB and infecting astrocytes. Control of JEV production by HBECs was associated with a significant increase in permeability, and with elevation of many host mediators, including cytokines, chemokines, cellular adhesion molecules, and matrix metalloproteases. When compared to the controls, significantly higher amounts of mediators were released from the apical side as opposed to the basolateral side. The increased release of mediators over time also correlated with increased BBB permeability. Treatment with dexamethasone led to a significant reduction in the release of interleukin 6 (IL6), C-C motif chemokine ligand 5 (CCL5) and C-X-C motif chemokine ligand 10 (CXCL10) from the apical side with a reduction in BBB disruption and no change in JEV production. The results are consistent with the hypothesis that JEV infection of the BBB triggers the production of a range of host mediators from both endothelial cells and astrocytes, which control JEV production but disrupt BBB integrity thus allowing virus entry into the brain. Dexamethasone treatment controlled the host response and limited BBB disruption in the model without increasing JEV production, supporting a re-investigation of its use therapeutically.


Asunto(s)
Astrocitos/metabolismo , Barrera Hematoencefálica/virología , Encefalitis Japonesa/metabolismo , Células Endoteliales/metabolismo , Antiinflamatorios/farmacología , Astrocitos/virología , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Células Cultivadas , Dexametasona/farmacología , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Células Endoteliales/virología , Humanos , Interleucinas/genética , Interleucinas/metabolismo
18.
J Virol ; 89(15): 7536-49, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25972559

RESUMEN

UNLABELLED: Semliki Forest virus (SFV) provides a well-characterized model system to study the pathogenesis of virus encephalitis. Several studies have used virus derived from the molecular clone SFV4. SFV4 virus does not have the same phenotype as the closely related L10 or the prototype virus from which its molecular clone was derived. In mice, L10 generates a high-titer plasma viremia, is efficiently neuroinvasive, and produces a fatal panencephalitis, whereas low-dose SFV4 produces a low-titer viremia, rarely enters the brain, and generally is avirulent. To determine the genetic differences responsible, the consensus sequence of L10 was determined and compared to that of SFV4. Of the 12 nucleotide differences, six were nonsynonymous; these were engineered into a new molecular clone, termed SFV6. The derived virus, SFV6, generated a high-titer viremia and was efficiently neuroinvasive and virulent. The phenotypic difference mapped to a single amino acid residue at position 162 in the E2 envelope glycoprotein (lysine in SFV4, glutamic acid in SFV6). Analysis of the L10 virus showed it contained different plaque phenotypes which differed in virulence. A lysine at E2 247 conferred a small-plaque avirulent phenotype and glutamic acid a large-plaque virulent phenotype. Viruses with a positively charged lysine at E2 162 or 247 were more reliant on glycosaminoglycans (GAGs) to enter cells and were selected for by passage in BHK-21 cells. Interestingly, viruses with the greatest reliance on binding to GAGs replicated to higher titers in the brain and more efficiently crossed an in vitro blood-brain barrier (BBB). IMPORTANCE: Virus encephalitis is a major disease, and alphaviruses, as highlighted by the recent epidemic of chikungunya virus (CHIKV), are medically important pathogens. In addition, alphaviruses provide well-studied experimental systems with extensive literature, many tools, and easy genetic modification. In this study, we elucidate the genetic basis for the difference in phenotype between SFV4 and the virus stocks from which it was derived and correct this by engineering a new molecular clone. We then use this clone in one comprehensive study to demonstrate that positively charged amino acid residues on the surface of the E2 glycoprotein, mediated by binding to GAGs, determine selective advantage and plaque size in BHK-21 cells, level of viremia in mice, ability to cross an artificial BBB, efficiency of replication in the brain, and virulence. Together with studies on Sindbis virus (SINV), this study provides an important advance in understanding alphavirus, and probably other virus, encephalitis.


Asunto(s)
Infecciones por Alphavirus/virología , Barrera Hematoencefálica/virología , Encefalitis/virología , Virus de los Bosques Semliki/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Encéfalo/virología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Virus de los Bosques Semliki/química , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/patogenicidad , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Viremia/virología , Virulencia
19.
Curr Protoc Neurosci ; 69: 3.27.1-17, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25297692

RESUMEN

Cell culture models of the blood-brain barrier (BBB) are useful tools to study the functionality of the BBB in health and disease. Several good in vitro BBB models are available from different species. However, most brain endothelial cells lose some of their in vivo BBB phenotype in culture. Porcine brain endothelial cells (PBECs) tend to retain most of their in vivo BBB characteristics and usually give higher transendothelial electrical resistance (TEER, representing functional well-developed tight junctions) compared to brain endothelial cells from other species. The protocol described in this unit gives detailed instructions for isolation and culture of PBECs from fresh porcine brains. This porcine BBB model generates high TEER without the need for co-culture with astrocytes. However, astrocyte-derived factors can be introduced to the system through the use of astrocyte-conditioned medium or co-culture with astrocytes, which may be necessary for further enhancing the BBB phenotype for certain complex studies.


Asunto(s)
Barrera Hematoencefálica/citología , Encéfalo/citología , Separación Celular/métodos , Células Endoteliales , Microvasos/citología , Animales , Barrera Hematoencefálica/fisiología , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Células Cultivadas , Impedancia Eléctrica , Células Endoteliales/fisiología , Humanos , Microvasos/fisiología , Ratas , Porcinos
20.
Brain Res ; 1521: 16-30, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23603406

RESUMEN

The blood-brain barrier (BBB) is formed by the endothelial cells of cerebral microvessels and forms the critical interface regulating molecular flux between blood and brain. It contributes to homoeostasis of the microenvironment of the central nervous system and protection from pathogens and toxins. Key features of the BBB phenotype are presence of complex intercellular tight junctions giving a high transendothelial electrical resistance (TEER), and strongly polarised (apical:basal) localisation of transporters and receptors. In vitro BBB models have been developed from primary culture of brain endothelial cells of several mammalian species, but most require exposure to astrocytic factors to maintain the BBB phenotype. Other limitations include complicated procedures for isolation, poor yield and batch-to-batch variability. Some immortalised brain endothelial cell models have proved useful for transport studies but most lack certain BBB features and have low TEER. We have developed an in vitro BBB model using primary cultured porcine brain endothelial cells (PBECs) which is relatively simple to prepare, robust, and reliably gives high TEER (mean~800 Ω cm(2)); it also shows good functional expression of key tight junction proteins, transporters, receptors and enzymes. The model can be used either in monoculture, for studies of molecular flux including permeability screening, or in co-culture with astrocytes when certain specialised features (e.g. receptor-mediated transcytosis) need to be maximally expressed. It is also suitable for a range of studies of cell:cell interaction in normal physiology and in pathology. The method for isolating and growing the PBECs is given in detail to facilitate adoption of the model. This article is part of a Special Issue entitled Companion Paper.


Asunto(s)
Barrera Hematoencefálica/citología , Técnicas de Cultivo de Célula/métodos , Células Endoteliales/citología , Modelos Animales , Animales , Barrera Hematoencefálica/fisiología , Permeabilidad Capilar/fisiología , Células Cultivadas , Impedancia Eléctrica , Células Endoteliales/fisiología , Porcinos , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...