Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; 18(47): e2202492, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36228092

RESUMEN

Membrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques. Thus, the authors aim to fabricate electroneutral-yet water-soluble-polymer nanodiscs. By attaching a sulfobetaine group to the commercial polymers DIBMA and SMA(2:1), these polyanionic polymers are converted to the electroneutral maleimide derivatives, Sulfo-DIBMA and Sulfo-SMA(2:1). Sulfo-DIBMA and Sulfo-SMA(2:1) readily extract proteins and phospholipids from artificial and cellular membranes to form nanodiscs. Crucially, the electroneutral nanodiscs avert unspecific interactions, thereby enabling new insights into protein-lipid interactions through lab-on-a-chip detection and in vitro translation of membrane proteins. Finally, the authors create a library comprising thousands of human membrane proteins and use proteome profiling by mass spectrometry to show that protein complexes are preserved in electroneutral nanodiscs.


Asunto(s)
Membrana Dobles de Lípidos , Nanoestructuras , Humanos , Membrana Dobles de Lípidos/química , Polímeros/química , Maleatos/química , Proteínas de la Membrana/química , Nanoestructuras/química
2.
J Am Chem Soc ; 142(51): 21382-21392, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33315387

RESUMEN

Amphiphilic agents, called detergents, are invaluable tools for studying membrane proteins. However, membrane proteins encapsulated by conventional head-to-tail detergents tend to denature or aggregate, necessitating the development of structurally distinct molecules with improved efficacy. Here, a novel class of diastereomeric detergents with a cyclopentane core unit, designated cyclopentane-based maltosides (CPMs), were prepared and evaluated for their ability to solubilize and stabilize several model membrane proteins. A couple of CPMs displayed enhanced behavior compared with the benchmark conventional detergent, n-dodecyl-ß-d-maltoside (DDM), for all the tested membrane proteins including two G-protein-coupled receptors (GPCRs). Furthermore, CPM-C12 was notable for its ability to confer enhanced membrane protein stability compared with the previously developed conformationally rigid NBMs [J. Am. Chem. Soc. 2017, 139, 3072] and LMNG. The effect of the individual CPMs on protein stability varied depending on both the detergent configuration (cis/trans) and alkyl chain length, allowing us draw conclusions on the detergent structure-property-efficacy relationship. Thus, this study not only provides novel detergent tools useful for membrane protein research but also reports on structural features of the detergents critical for detergent efficacy in stabilizing membrane proteins.


Asunto(s)
Ciclopentanos/química , Maltosa/química , Maltosa/farmacología , Proteínas de la Membrana/química , Diseño de Fármacos , Glucósidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Estabilidad Proteica/efectos de los fármacos , Solubilidad/efectos de los fármacos , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA