Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Glia ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39318236

RESUMEN

Substantial advances in technology are permitting a high resolution understanding of the salience of glia, and have helped us to transcend decades of predominantly neuron-centric research. In particular, recent advances in 'omic' technologies have enabled unique insights into glial biology, shedding light on the cellular and molecular aspects of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here, we review studies using omic techniques to attempt to understand the role of glia in ALS across different model systems and post mortem tissue. We also address caveats that should be considered when interpreting such studies, and how some of these may be mitigated through either using a multi-omic approach and/or careful low throughput, high fidelity orthogonal validation with particular emphasis on functional validation. Finally, we consider emerging technologies and their potential relevance in deepening our understanding of glia in ALS.

3.
Nat Commun ; 15(1): 4819, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844464

RESUMEN

Neuronal differentiation requires building a complex intracellular architecture, and therefore the coordinated regulation of defined sets of genes. RNA-binding proteins (RBPs) play a key role in this regulation. However, while their action on individual mRNAs has been explored in depth, the mechanisms used to coordinate gene expression programs shaping neuronal morphology are poorly understood. To address this, we studied how the paradigmatic RBP IMP1 (IGF2BP1), an essential developmental factor, selects and regulates its RNA targets during the human neuronal differentiation. We perform a combination of system-wide and molecular analyses, revealing that IMP1 developmentally transitions to and directly regulates the expression of mRNAs encoding essential regulators of the microtubule network, a key component of neuronal morphology. Furthermore, we show that m6A methylation drives the selection of specific IMP1 mRNA targets and their protein expression during the developmental transition from neural precursors to neurons, providing a molecular principle for the onset of target selectivity.


Asunto(s)
Diferenciación Celular , Microtúbulos , Neuronas , ARN Mensajero , Proteínas de Unión al ARN , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Microtúbulos/metabolismo , Neuronas/metabolismo , Neuronas/citología , Diferenciación Celular/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Metilación , Neurogénesis/genética , Adenosina/metabolismo , Adenosina/análogos & derivados , Regulación del Desarrollo de la Expresión Génica
4.
Int Rev Neurobiol ; 176: 381-450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38802179

RESUMEN

Amyotrophic lateral sclerosis (ALS) has traditionally been considered a neuron-centric disease. This view is now outdated, with increasing recognition of cell autonomous and non-cell autonomous contributions of central and peripheral nervous system glia to ALS pathomechanisms. With glial research rapidly accelerating, we comprehensively interrogate the roles of astrocytes, microglia, oligodendrocytes, ependymal cells, Schwann cells and satellite glia in nervous system physiology and ALS-associated pathology. Moreover, we highlight the inter-glial, glial-neuronal and inter-system polylogue which constitutes the healthy nervous system and destabilises in disease. We also propose classification based on function for complex glial reactive phenotypes and discuss the pre-requisite for integrative modelling to advance translation. Given the paucity of life-enhancing therapies currently available for ALS patients, we discuss the promising potential of harnessing glia in driving ALS therapeutic discovery.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neuroglía , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/terapia , Humanos , Neuroglía/fisiología , Animales
5.
Brain ; 147(7): 2325-2333, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38527856

RESUMEN

APP gene dosage is strongly associated with Alzheimer's disease (AD) pathogenesis. Genomic duplication of the APP locus leads to autosomal dominant early-onset AD. Individuals with Down syndrome (trisomy of chromosome 21) harbour three copies of the APP gene and invariably develop progressive AD with highly characteristic neuropathological features. Restoring expression of APP to the equivalent of that of two gene copies, or lower, is a rational therapeutic strategy, as it would restore physiological levels of neuronal APP protein without the potentially deleterious consequences of inadvertently inducing loss of APP function. Here we find that antisense oligonucleotides (ASOs) targeting APP are an effective approach to reduce APP protein levels and rescue endolysosome and autophagy dysfunction in APP duplication and Trisomy 21 human induced pluripotent stem cell (hiPSC)-derived cortical neurons. Importantly, using ultrasensitive single-aggregate imaging techniques, we show that APP targeting ASOs significantly reduce both intracellular and extracellular amyloid-ß-containing aggregates. Our results highlight the potential of APP ASOs as a therapeutic approach for forms of AD caused by duplication of the APP gene, including monogenic AD and AD related to Down syndrome.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Síndrome de Down , Células Madre Pluripotentes Inducidas , Lisosomas , Oligonucleótidos Antisentido , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Oligonucleótidos Antisentido/farmacología , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Células Cultivadas
6.
Autophagy ; 20(5): 1201-1202, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38174587

RESUMEN

Dysfunction of the neuronal endolysosome and macroautophagy/autophagy pathway is emerging as an important pathogenic mechanism in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The VCP (valosin-containing protein) gene is of significant relevance, directly implicated in both FTD and ALS. In our recent study, we used patient-derived stem cells to study the effects of VCP mutations on the endolysosome and autophagy system in human cortical excitatory neurons. We found that VCP mutations cause an abnormal accumulation of enlarged endosomes and lysosomes, accompanied by reduced autophagy flux. VCP mutations also lead to the spatial dissociation of intra-nuclear RNA-binding proteins, FUS and SFPQ, which correlates with alternative splicing of the MAPT pre-mRNA and increased tau phosphorylation. Importantly, we found that an increase in the 4R-tau isoform is sufficient to drive toxic changes in healthy human cortical excitatory neurons, including tau hyperphosphorylation, endolysosomal dysfunction, lysosomal membrane rupture, endoplasmic reticulum stress, and apoptosis. Together, our data suggest that endolysosomal and autophagy dysfunction could represent a convergent pathogenic "design principle" shared by both FTD and ALS.


Asunto(s)
Autofagia , Demencia Frontotemporal , Lisosomas , Proteínas tau , Humanos , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Autofagia/fisiología , Proteínas tau/metabolismo , Lisosomas/metabolismo , Endosomas/metabolismo , Neuronas/metabolismo , Mutación/genética , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética
7.
Brain ; 147(3): 970-979, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37882537

RESUMEN

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two incurable neurodegenerative diseases that exist on a clinical, genetic and pathological spectrum. The VCP gene is highly relevant, being directly implicated in both FTD and ALS. Here, we investigate the effects of VCP mutations on the cellular homoeostasis of human induced pluripotent stem cell-derived cortical neurons, focusing on endolysosomal biology and tau pathology. We found that VCP mutations cause abnormal accumulation of enlarged endolysosomes accompanied by impaired interaction between two nuclear RNA binding proteins: fused in sarcoma (FUS) and splicing factor, proline- and glutamine-rich (SFPQ) in human cortical neurons. The spatial dissociation of intranuclear FUS and SFPQ correlates with alternative splicing of the MAPT pre-mRNA and increased tau phosphorylation. Importantly, we show that inducing 4R tau expression using antisense oligonucleotide technology is sufficient to drive neurodegeneration in control human neurons, which phenocopies VCP-mutant neurons. In summary, our findings demonstrate that tau hyperphosphorylation, endolysosomal dysfunction, lysosomal membrane rupture, endoplasmic reticulum stress and apoptosis are driven by a pathogenic increase in 4R tau.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Proteína que Contiene Valosina , Humanos , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Lisosomas , Proteína que Contiene Valosina/genética
8.
Nat Commun ; 14(1): 8272, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092738

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that exist on a clinico-pathogenetic spectrum, designated ALS/FTD. The most common genetic cause of ALS/FTD is expansion of the intronic hexanucleotide repeat (GGGGCC)n in C9orf72. Here, we investigate the formation of nucleic acid secondary structures in these expansion repeats, and their role in generating condensates characteristic of ALS/FTD. We observe significant aggregation of the hexanucleotide sequence (GGGGCC)n, which we associate to the formation of multimolecular G-quadruplexes (mG4s) by using a range of biophysical techniques. Exposing the condensates to G4-unfolding conditions leads to prompt disassembly, highlighting the key role of mG4-formation in the condensation process. We further validate the biological relevance of our findings by detecting an increased prevalence of G4-structures in C9orf72 mutant human motor neurons when compared to healthy motor neurons by staining with a G4-selective fluorescent probe, revealing signal in putative condensates. Our findings strongly suggest that RNA G-rich repetitive sequences can form protein-free condensates sustained by multimolecular G-quadruplexes, highlighting their potential relevance as therapeutic targets for C9orf72 mutation-related ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , G-Cuádruplex , Humanos , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/genética , ARN/genética , ARN/química , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética
9.
Trends Neurosci ; 46(10): 879-892, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37543480

RESUMEN

The processes of mRNA export from the nucleus and subsequent mRNA translation in the cytoplasm are of particular relevance in eukaryotic cells. In highly polarised cells such as neurons, finely-tuned molecular regulation of these processes serves to safeguard the spatiotemporal fidelity of gene expression. Nonsense-mediated mRNA decay (NMD) is a cytoplasmic translation-dependent quality control process that regulates gene expression in a wide range of scenarios in the nervous system, including neurodevelopment, learning, and memory formation. Moreover, NMD dysregulation has been implicated in a broad range of neurodevelopmental and neurodegenerative disorders. We discuss how NMD and related aspects of mRNA translation regulate key neuronal functions and, in particular, we focus on evidence implicating these processes in the molecular pathogenesis of neurodegeneration. Finally, we discuss the therapeutic potential and challenges of targeting mRNA translation and NMD across the spectrum of largely untreatable neurological diseases.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido , Biosíntesis de Proteínas , Humanos , Neuronas
10.
Life Sci Alliance ; 6(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37438085

RESUMEN

An intronic GGGGCC repeat expansion in C9orf72 is a common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. The repeats are transcribed in both sense and antisense directions to generate distinct dipeptide repeat proteins, of which poly(GA), poly(GR), and poly(PR) have been implicated in contributing to neurodegeneration. Poly(PR) binding to RNA may contribute to toxicity, but analysis of poly(PR)-RNA binding on a transcriptome-wide scale has not yet been carried out. We therefore performed crosslinking and immunoprecipitation (CLIP) analysis in human cells to identify the RNA binding sites of poly(PR). We found that poly(PR) binds to nearly 600 RNAs, with the sequence GAAGA enriched at the binding sites. In vitro experiments showed that poly(GAAGA) RNA binds poly(PR) with higher affinity than control RNA and induces the phase separation of poly(PR) into condensates. These data indicate that poly(PR) preferentially binds to poly(GAAGA)-containing RNAs, which may have physiological consequences.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Transcriptoma/genética , Proteína C9orf72/genética , Poli A , Dipéptidos , ARN/genética
11.
Mol Neurobiol ; 60(12): 6896-6915, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37516663

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are now known as parts of a disease spectrum with common pathological features and genetic causes. However, as both conditions are clinically heterogeneous, patient groups may be phenotypically similar but pathogenically and genetically variable. Despite numerous clinical trials, there remains no effective therapy for these conditions, which, in part, may be due to challenges of therapy development in a heterogeneous patient population. Disruption to protein homeostasis is a key feature of different forms of ALS and FTD. Targeting the endogenous protein chaperone system, the heat shock response (HSR) may, therefore, be a potential therapeutic approach. We conducted a preclinical study of a known pharmacological amplifier of the HSR, called arimoclomol, in mice with a mutation in valosin-containing protein (VCP) which causes both ALS and FTD in patients. We demonstrate that amplification of the HSR ameliorates the ALS/FTD-like phenotype in the spinal cord and brain of mutant VCP mice and prevents neuronal loss, replicating our earlier findings in the SOD1 mouse model of ALS. Moreover, in human cell models, we demonstrate improvements in pathology upon arimoclomol treatment in mutant VCP patient fibroblasts and iPSC-derived motor neurons. Our findings suggest that targeting of the HSR may have therapeutic potential, not only in non-SOD1 ALS, but also for the treatment of FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Animales , Ratones , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Hidroxilaminas/uso terapéutico , Respuesta al Choque Térmico , Mutación/genética
12.
Neuron ; 111(19): 3011-3027.e7, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37480846

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by nucleocytoplasmic mislocalization of the RNA-binding protein (RBP) TDP-43. However, emerging evidence suggests more widespread mRNA and protein mislocalization. Here, we employed nucleocytoplasmic fractionation, RNA sequencing, and mass spectrometry to investigate the localization of mRNA and protein in induced pluripotent stem cell-derived motor neurons (iPSMNs) from ALS patients with TARDBP and VCP mutations. ALS mutant iPSMNs exhibited extensive nucleocytoplasmic mRNA redistribution, RBP mislocalization, and splicing alterations. Mislocalized proteins exhibited a greater affinity for redistributed transcripts, suggesting a link between RBP mislocalization and mRNA redistribution. Notably, treatment with ML240, a VCP ATPase inhibitor, partially restored mRNA and protein localization in ALS mutant iPSMNs. ML240 induced changes in the VCP interactome and lysosomal localization and reduced oxidative stress and DNA damage. These findings emphasize the link between RBP mislocalization and mRNA redistribution in ALS motor neurons and highlight the therapeutic potential of VCP inhibition.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ARN Mensajero/metabolismo , Neuronas Motoras/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína que Contiene Valosina/genética
13.
Nucleic Acids Res ; 51(16): 8774-8786, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37377445

RESUMEN

m6A methylation provides an essential layer of regulation in organismal development, and is aberrant in a range of cancers and neuro-pathologies. The information encoded by m6A methylation is integrated into existing RNA regulatory networks by RNA binding proteins that recognise methylated sites, the m6A readers. m6A readers include a well-characterised class of dedicated proteins, the YTH proteins, as well as a broader group of multi-functional regulators where recognition of m6A is only partially understood. Molecular insight in this recognition is essential to build a mechanistic understanding of global m6A regulation. In this study, we show that the reader IMP1 recognises the m6A using a dedicated hydrophobic platform that assembles on the methyl moiety, creating a stable high-affinity interaction. This recognition is conserved across evolution and independent from the underlying sequence context but is layered upon the strong sequence specificity of IMP1 for GGAC RNA. This leads us to propose a concept for m6A regulation where methylation plays a context-dependent role in the recognition of selected IMP1 targets that is dependent on the cellular concentration of available IMP1, differing from that observed for the YTH proteins.


Asunto(s)
Proteínas Aviares , Proteínas de Unión al ARN , Adenosina/metabolismo , Proteínas Aviares/metabolismo , Metilación , Procesamiento Proteico-Postraduccional , Proteínas/genética , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Pollos
14.
Nat Rev Neurol ; 19(7): 395-409, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37308616

RESUMEN

Despite advances in uncovering the mechanisms that underlie neuroinflammation and neurodegenerative disease, therapies that prevent neuronal loss remain elusive. Targeting of disease-defining markers in conditions such as Alzheimer disease (amyloid-ß and tau) or Parkinson disease (α-synuclein) has been met with limited success, suggesting that these proteins do not act in isolation but form part of a pathological network. This network could involve phenotypic alteration of multiple cell types in the CNS, including astrocytes, which have a major neurosupportive, homeostatic role in the healthy CNS but adopt reactive states under acute or chronic adverse conditions. Transcriptomic studies in human patients and disease models have revealed the co-existence of many putative reactive sub-states of astrocytes. Inter-disease and even intra-disease heterogeneity of reactive astrocytic sub-states are well established, but the extent to which specific sub-states are shared across different diseases is unclear. In this Review, we highlight how single-cell and single-nuclei RNA sequencing and other 'omics' technologies can enable the functional characterization of defined reactive astrocyte states in various pathological scenarios. We provide an integrated perspective, advocating cross-modal validation of key findings to define functionally important sub-states of astrocytes and their triggers as tractable therapeutic targets with cross-disease relevance.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Astrocitos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/metabolismo
15.
J Neurotrauma ; 40(19-20): 2164-2173, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37261979

RESUMEN

The neuroinflammatory response after traumatic brain injury (TBI) is implicated as a key mediator of secondary injury in both the acute and chronic periods after primary injury. Microglia are the key innate immune cell in the central nervous system, responding to injury with the release of cytokines and chemokines. In this context, we aimed to characterize the downstream cytokine response of human induced pluripotent stem cell (iPSC)-derived microglia when stimulated with five separate cytokines identified after human TBI. The iPSC-derived microglia were exposed to interleukin (IL)-1ß, IL-4, IL-6, IL-10, and tumor necrosis factor (TNF) in the concentration ranges identified in clinical TBI studies. The downstream cytokine response was measured against a panel of 37 separate cytokines over a 72h time-course. The secretome revealed concentration-, time- and combined concentration and time-dependent downstream responses. TNF appeared to be the strongest inducer of downstream cytokine changes (51), followed by IL-1ß (26) and IL-4 (19). IL-10 (11) and IL-6 (10) produced fewer responses. We also compare these responses with our previous studies of iPSC-derived neuronal and astrocyte cultures and the in vivo human TBI cytokine response. Notably, we found microglial culture to induce both a wider range of downstream cytokine responses and a greater fold change in concentration for those downstream responses, compared with astrocyte and neuronal cultures. In summary, we present a dataset for human microglial cytokine responses specific to the secretome found in the clinical context of TBI. This reductionist approach complements our previous datasets for astrocyte and neuronal responses and will provide a platform to enable future studies to unravel the complex neuroinflammatory network activated after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Células Madre Pluripotentes Inducidas , Animales , Humanos , Microglía/patología , Interleucina-10 , Interleucina-6 , Interleucina-4 , Modelos Animales de Enfermedad , Lesiones Traumáticas del Encéfalo/complicaciones , Citocinas , Lesiones Encefálicas/complicaciones , Factor de Necrosis Tumoral alfa
16.
Nat Commun ; 14(1): 2176, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37080969

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) causes motor neuron degeneration, with 97% of cases exhibiting TDP-43 proteinopathy. Elucidating pathomechanisms has been hampered by disease heterogeneity and difficulties accessing motor neurons. Human induced pluripotent stem cell-derived motor neurons (iPSMNs) offer a solution; however, studies have typically been limited to underpowered cohorts. Here, we present a comprehensive compendium of 429 iPSMNs from 15 datasets, and 271 post-mortem spinal cord samples. Using reproducible bioinformatic workflows, we identify robust upregulation of p53 signalling in ALS in both iPSMNs and post-mortem spinal cord. p53 activation is greatest with C9orf72 repeat expansions but is weakest with SOD1 and FUS mutations. TDP-43 depletion potentiates p53 activation in both post-mortem neuronal nuclei and cell culture, thereby functionally linking p53 activation with TDP-43 depletion. ALS iPSMNs and post-mortem tissue display enrichment of splicing alterations, somatic mutations, and gene fusions, possibly contributing to the DNA damage response.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Inestabilidad Genómica , Transcriptoma , Empalme Alternativo/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Cadáver , Estudios de Cohortes , Conjuntos de Datos como Asunto , Daño del ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Fusión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación , Médula Espinal/metabolismo , Transcriptoma/genética , Humanos
17.
Med Res Rev ; 43(4): 829-854, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36786126

RESUMEN

Despite the devastating clinical outcome of the neurodegenerative disease, amyotrophic lateral sclerosis (ALS), its etiology remains mysterious. Approximately 90% of ALS is characterized as sporadic, signifying that the patient has no family history of the disease. The development of an impactful disease modifying therapy across the ALS spectrum has remained out of grasp, largely due to the poorly understood mechanisms of disease onset and progression. Currently, ALS is invariably fatal and rapidly progressive. It is hypothesized that multiple factors can lead to the development of ALS, however, treatments are often focused on targeting specific familial forms of the disease (10% of total cases). There is a strong need to develop disease modifying treatments for ALS that can be effective across the full ALS spectrum of familial and sporadic cases. Although the onset of disease varies significantly between patients, there are general disease mechanisms and progressions that can be seen broadly across ALS patients. Therefore, this review explores the targeting of these widespread disease mechanisms as possible areas for therapeutic intervention to treat ALS broadly. In particular, this review will focus on targeting mechanisms of defective protein homeostasis and RNA processing, which are both increasingly recognized as design principles of ALS pathogenesis. Additionally, this review will explore the benefits of gene therapy as an approach to treating ALS, specifically focusing on the use of adeno-associated virus (AAV) as a vector for gene delivery to the CNS and recent advances in the field.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Terapia Genética , Dependovirus/genética
18.
NPJ Parkinsons Dis ; 8(1): 162, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424392

RESUMEN

Mutations in the SNCA gene cause autosomal dominant Parkinson's disease (PD), with loss of dopaminergic neurons in the substantia nigra, and aggregation of α-synuclein. The sequence of molecular events that proceed from an SNCA mutation during development, to end-stage pathology is unknown. Utilising human-induced pluripotent stem cells (hiPSCs), we resolved the temporal sequence of SNCA-induced pathophysiological events in order to discover early, and likely causative, events. Our small molecule-based protocol generates highly enriched midbrain dopaminergic (mDA) neurons: molecular identity was confirmed using single-cell RNA sequencing and proteomics, and functional identity was established through dopamine synthesis, and measures of electrophysiological activity. At the earliest stage of differentiation, prior to maturation to mDA neurons, we demonstrate the formation of small ß-sheet-rich oligomeric aggregates, in SNCA-mutant cultures. Aggregation persists and progresses, ultimately resulting in the accumulation of phosphorylated α-synuclein aggregates. Impaired intracellular calcium signalling, increased basal calcium, and impairments in mitochondrial calcium handling occurred early at day 34-41 post differentiation. Once midbrain identity fully developed, at day 48-62 post differentiation, SNCA-mutant neurons exhibited mitochondrial dysfunction, oxidative stress, lysosomal swelling and increased autophagy. Ultimately these multiple cellular stresses lead to abnormal excitability, altered neuronal activity, and cell death. Our differentiation paradigm generates an efficient model for studying disease mechanisms in PD and highlights that protein misfolding to generate intraneuronal oligomers is one of the earliest critical events driving disease in human neurons, rather than a late-stage hallmark of the disease.

19.
Genome Res ; 32(10): 1808-1825, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36180233

RESUMEN

Intron retention (IR) is now recognized as a dominant splicing event during motor neuron (MN) development; however, the role and regulation of intron-retaining transcripts (IRTs) localized to the cytoplasm remain particularly understudied. Here we show that IR is a physiological process that is spatiotemporally regulated during MN lineage restriction and that IRTs in the cytoplasm are detected in as many as 13% (n = 2297) of the genes expressed during this process. We identify a major class of cytoplasmic IRTs that are not associated with reduced expression of their own genes but instead show a high capacity for RNA-binding protein and miRNA occupancy. Finally, we show that ALS-causing VCP mutations lead to a selective increase in cytoplasmic abundance of this particular class of IRTs, which in turn temporally coincides with an increase in the nuclear expression level of predicted miRNA target genes. Altogether, our study identifies a previously unrecognized class of cytoplasmic intronic sequences with potential regulatory function beyond gene expression.


Asunto(s)
MicroARNs , Neuronas Motoras , Humanos , Intrones , Citoplasma/genética , Citoplasma/metabolismo , Neurogénesis/genética , MicroARNs/genética , MicroARNs/metabolismo
20.
Brain ; 145(1): 17-26, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35265969

RESUMEN

Accumulating evidence suggests that neurodegenerative diseases are not merely neuronal in nature but comprise multicellular involvement, with astrocytes emerging as key players. The pathomechanisms of several neurodegenerative diseases involve the deposition of misfolded protein aggregates in neurons that have characteristic prion-like behaviours such as template-directed seeding, intercellular propagation, distinct conformational strains and protein-mediated toxicity. The role of astrocytes in dealing with these pathological prion-like protein aggregates and whether their responses either protect from or conspire with the disease process is currently unclear. Here we review the existing literature implicating astrocytes in multiple neurodegenerative proteinopathies with a focus on prion-like behaviour in this context.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades por Prión , Priones , Astrocitos/metabolismo , Humanos , Enfermedades Neurodegenerativas/patología , Enfermedades por Prión/patología , Priones/metabolismo , Agregado de Proteínas , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...