Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(38): 17387-17398, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36112426

RESUMEN

The relative stability of reactive intermediates and reactants on a surface, which dictates the rate and selectivity of catalytic reactions in both gas and liquid phases, is dependent on numerous factors. One well-established example is secondary interactions, such as van der Waals interactions between the catalyst surface and the pendant group of the intermediate, which can govern reaction selectivity for coupling reactions. Herein, we directly show that interactions between adsorbed reaction intermediates and reactant molecules increase the binding energy and affects the geometrical arrangement of coadsorbed reactant/solvent molecules. Evidence for this effect is demonstrated for the oxidative coupling reaction of methanol on a single crystal gold (Au(110)) surface. The rate-limiting reaction intermediate for methanol self-coupling, methoxy, stabilizes excess adsorbed methanol, which desorbs as a result of beta-hydride decomposition of the adsorbed methoxy. Direct molecular-scale imaging by scanning tunneling microscopy, supplemented by density functional theory, revealed interactive structures formed by methoxy and coadsorbed methanol. Interactions between the methoxy intermediate and coadsorbed methanol stabilizes a hydrogen-bonded network comprising methoxy and methanol by a minimum of 0.13 eV per methanol molecule. Inclusion of such interactions between reaction intermediates and coadsorbed reactants and solvents in kinetic models is important for microkinetic analysis of the rates and selectivities of catalytic reactions in both the gas and liquid phases whenever appreciable coverages of species from the ambient phase exist.


Asunto(s)
Oro , Metanol , Catálisis , Etanol , Oro/química , Hidrógeno , Metanol/química , Solventes/química
2.
ACS Nano ; 15(9): 14662-14671, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34431659

RESUMEN

Understanding cellular electrical communications in both health and disease necessitates precise subcellular electrophysiological modulation. Nanomaterial-assisted photothermal stimulation was demonstrated to modulate cellular activity with high spatiotemporal resolution. Ideal candidates for such an application are expected to have high absorbance at the near-infrared window, high photothermal conversion efficiency, and straightforward scale-up of production to allow future translation. Here, we demonstrate two-dimensional Ti3C2Tx (MXene) as an outstanding candidate for remote, nongenetic, optical modulation of neuronal electrical activity with high spatiotemporal resolution. Ti3C2Tx's photothermal response measured at the single-flake level resulted in local temperature rises of 2.31 ± 0.03 and 3.30 ± 0.02 K for 635 and 808 nm laser pulses (1 ms, 10 mW), respectively. Dorsal root ganglion (DRG) neurons incubated with Ti3C2Tx film (25 µg/cm2) or Ti3C2Tx flake dispersion (100 µg/mL) for 6 days did not show a detectable influence on cellular viability, indicating that Ti3C2Tx is noncytotoxic. DRG neurons were photothermally stimulated using Ti3C2Tx films and flakes with as low as tens of microjoules per pulse incident energy (635 nm, 2 µJ for film, 18 µJ for flake) with subcellular targeting resolution. Ti3C2Tx's straightforward and large-scale synthesis allows translation of the reported photothermal stimulation approach in multiple scales, thus presenting a powerful tool for modulating electrophysiology from single-cell to additive manufacturing of engineered tissues.


Asunto(s)
Neuronas , Titanio
3.
J Chem Phys ; 153(24): 244702, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33380103

RESUMEN

Metal alloys are ubiquitous in many branches of heterogeneous catalysis, and it is now fairly well established that the local atomic structure of an alloy can have a profound influence on its chemical reactivity. While these effects can be difficult to probe in nanoparticle catalysts, model studies using well defined single crystal surfaces alloyed with dopants enable these structure-function correlations to be drawn. The first step in this approach involves understanding the alloying mechanism and the type of ensembles formed. In this study, we examined the atomic structure of RhCu single-atom alloys formed on Cu(111), Cu(100), and Cu(110) surfaces. Our results show a striking difference between Rh atoms alloying in Cu(111) vs the more open Cu(100) and Cu(110) surface facets. Unlike Cu(111) on which Rh atoms preferentially place-exchange with Cu atoms in the local regions above step edges leaving the majority of the Cu surface free of Rh, highly dispersed, homogeneous alloys are formed on the Cu(100) and (110) surfaces. These dramatically different alloying mechanisms are understood by quantifying the energetic barriers for atomic hopping, exchange, swapping, and vacancy filling events for Rh atoms on different Cu surfaces through theoretical calculations. Density functional theory results indicate that the observed differences in the alloying mechanism can be attributed to a faster hopping rate, relatively high atomic exchange barriers, and stronger binding of Rh atoms in the vicinity of step edges on Cu(111) compared to Cu(110) and Cu(100). These model systems will serve as useful platforms for examining structure sensitive chemistry on single-atom alloys.

4.
Chem Rev ; 120(23): 12834-12872, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33006894

RESUMEN

Selective hydrogenation of α,ß-unsaturated aldehydes to unsaturated alcohols is a challenging class of reactions, yielding valuable intermediates for the production of pharmaceuticals, perfumes, and flavorings. On monometallic heterogeneous catalysts, the formation of the unsaturated alcohols is thermodynamically disfavored over the saturated aldehydes. Hence, new catalysts are required to achieve the desired selectivity. Herein, the literature of three major research areas in catalysis is integrated as a step toward establishing the guidelines for enhancing the selectivity: reactor studies of complex catalyst materials at operating temperature and pressure, surface science studies of crystalline surfaces in ultrahigh vacuum, and first-principles modeling using density functional theory calculations. Aggregate analysis shows that bimetallic and dilute alloy catalysts significantly enhance the selectivity to the unsaturated alcohols compared to monometallic catalysts. This comprehensive review focuses primarily on the role of different metal surfaces as well as the factors that promote the adsorption of the unsaturated aldehyde via its C═O bond, most notably by electronic modification of the surface and formation of the electrophilic sites. Furthermore, challenges, gaps, and opportunities are identified to advance the rational design of efficient catalysts for this class of reactions, including the need for systematic studies of catalytic processes, theoretical modeling of complex materials, and model studies under ambient pressure and temperature.

5.
Proc Natl Acad Sci U S A ; 117(37): 22657-22664, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32879000

RESUMEN

The migration of species across interfaces can crucially affect the performance of heterogeneous catalysts. A key concept in using bimetallic catalysts for hydrogenation is that the active metal supplies hydrogen atoms to the host metal, where selective hydrogenation can then occur. Herein, we demonstrate that, following dihydrogen dissociation on palladium islands, hydrogen atoms migrate from palladium to silver, to which they are generally less strongly bound. This migration is driven by the population of weakly bound states on the palladium at high hydrogen atom coverages which are nearly isoenergetic with binding sites on the silver. The rate of hydrogen atom migration depends on the palladium-silver interface length, with smaller palladium islands more efficiently supplying hydrogen atoms to the silver. This study demonstrates that hydrogen atoms can migrate from a more strongly binding metal to a more weakly binding surface under special conditions, such as high dihydrogen pressure.

6.
ACS Nano ; 14(4): 4682-4688, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32186852

RESUMEN

Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is more challenging. We demonstrate the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide. Specifically, we study the chiral "29" copper oxide, formed by oxidizing a Cu(111) single crystal at 650 K. Surface structure spread single crystals, which expose a continuous distribution of surface orientations as a function of position on the crystal, enable us to systematically investigate the mechanism of chirality transfer between the metal and the surface oxide with high-resolution scanning tunneling microscopy. We discover that the local underlying metal facet directs the orientation and chirality of the oxide overlayer. Importantly, single homochiral domains of the "29" oxide were found in areas where the Cu step edges that templated growth were ≤20 nm apart. We use this information to select a Cu(239 241 246) oriented single crystal and demonstrate that a "29" oxide surface can be grown in homochiral domains by templating from the subtle chirality of the underlying metal crystal. This work demonstrates how a small degree of chirality induced by slight misorientation of a metal surface (∼1 sites/20 nm2) can be amplified by oxidation to yield a homochiral oxide with a regular array of chiral oxide pores (∼75 sites/20 nm2). This offers a general approach for making chiral oxide surfaces via oxidation of an appropriately "miscut" metal surface.

7.
J Chem Phys ; 151(16): 164705, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31675860

RESUMEN

Silver-based heterogeneous catalysts, modified with a range of elements, have found industrial application in several reactions in which selectivity is a challenge. Alloying small amounts of Pt into Ag has the potential to greatly enhance the somewhat low reactivity of Ag while maintaining high selectivity and resilience to poisoning. This single-atom alloy approach has had many successes for other alloy combinations but has yet to be investigated for PtAg. Using scanning tunneling microscopy (STM) and STM-based spectroscopy, we characterized the atomic-scale surface structure of a range of submonolayer amounts of Pt deposited on and in Ag(111) as a function of temperature. Near room temperature, intermixing of PtAg results in multiple metastable structures on the surface. Increasing the alloying temperature results in a higher concentration of isolated Pt atoms in the regions near Ag step edges as well as direct exchange of Pt atoms into Ag terraces. Furthermore, STM-based work function measurements allow us to identify Pt rich areas of the samples. We use CO temperature programmed desorption to confirm our STM assignments and quantify CO binding strengths that are compared with theory. Importantly, we find that CO, a common catalyst poison, binds more weakly to Pt atoms in the Ag surface than extended Pt ensembles. Taken together, this atomic-scale characterization of model PtAg surface alloys provides a starting point to investigate how the size and structure of Pt ensembles affect reaction pathways on the alloy and can inform the design of alloy catalysts with improved catalytic properties and resilience to poisoning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA