RESUMEN
Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown. Here we show that microsatellite instability modulates DNA repair by toggling hypermutable mononucleotide homopolymer runs in MSH6 and MSH3 through stochastic frameshift switching. Spontaneous mutation and reversion modulate subclonal mutation rate, mutation bias and HLA and neoantigen diversity. Patient-derived organoids corroborate these observations and show that MMR homopolymer sequences drift back into reading frame in the absence of immune selection, suggesting a fitness cost of elevated mutation rates. Combined experimental and simulation studies demonstrate that subclonal immune selection favors incremental MMR mutations. Overall, our data demonstrate that MMR-deficient colorectal cancers fuel intratumor heterogeneity by adapting subclonal mutation rate and diversity to immune selection.
Asunto(s)
Neoplasias Colorrectales , Reparación de la Incompatibilidad de ADN , Inestabilidad de Microsatélites , Humanos , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN/genética , Proteínas de Unión al ADN/genética , Mutación , Proteína 3 Homóloga de MutS/genética , Tasa de Mutación , Mutación del Sistema de Lectura/genéticaRESUMEN
OBJECTIVE: Improving prognostication to direct personalised therapy remains an unmet need. This study prospectively investigated promising CT, genetic, and immunohistochemical markers to improve the prediction of colorectal cancer recurrence. MATERIAL AND METHODS: This multicentre trial (ISRCTN 95037515) recruited patients with primary colorectal cancer undergoing CT staging from 13 hospitals. Follow-up identified cancer recurrence and death. A baseline model for cancer recurrence at 3 years was developed from pre-specified clinicopathological variables (age, sex, tumour-node stage, tumour size, location, extramural venous invasion, and treatment). Then, CT perfusion (blood flow, blood volume, transit time and permeability), genetic (RAS, RAF, and DNA mismatch repair), and immunohistochemical markers of angiogenesis and hypoxia (CD105, vascular endothelial growth factor, glucose transporter protein, and hypoxia-inducible factor) were added to assess whether prediction improved over tumour-node staging alone as the main outcome measure. RESULTS: Three hundred twenty-six of 448 participants formed the final cohort (226 male; mean 66 ± 10 years. 227 (70%) had ≥ T3 stage cancers; 151 (46%) were node-positive; 81 (25%) developed subsequent recurrence. The sensitivity and specificity of staging alone for recurrence were 0.56 [95% CI: 0.44, 0.67] and 0.58 [0.51, 0.64], respectively. The baseline clinicopathologic model improved specificity (0.74 [0.68, 0.79], with equivalent sensitivity of 0.57 [0.45, 0.68] for high vs medium/low-risk participants. The addition of prespecified CT perfusion, genetic, and immunohistochemical markers did not improve prediction over and above the clinicopathologic model (sensitivity, 0.58-0.68; specificity, 0.75-0.76). CONCLUSION: A multivariable clinicopathological model outperformed staging in identifying patients at high risk of recurrence. Promising CT, genetic, and immunohistochemical markers investigated did not further improve prognostication in rigorous prospective evaluation. CLINICAL RELEVANCE STATEMENT: A prognostic model based on clinicopathological variables including age, sex, tumour-node stage, size, location, and extramural venous invasion better identifies colorectal cancer patients at high risk of recurrence for neoadjuvant/adjuvant therapy than stage alone. KEY POINTS: Identification of colorectal cancer patients at high risk of recurrence is an unmet need for treatment personalisation. This model for recurrence, incorporating many patient variables, had higher specificity than staging alone. Continued optimisation of risk stratification schema will help individualise treatment plans and follow-up schedules.
Asunto(s)
Neoplasias Colorrectales , Recurrencia Local de Neoplasia , Tomografía Computarizada por Rayos X , Humanos , Masculino , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/diagnóstico por imagen , Femenino , Recurrencia Local de Neoplasia/diagnóstico por imagen , Anciano , Pronóstico , Estudios Prospectivos , Tomografía Computarizada por Rayos X/métodos , Persona de Mediana Edad , Biomarcadores de Tumor , Estadificación de Neoplasias , Sensibilidad y Especificidad , InmunohistoquímicaRESUMEN
Bone marrow trephine biopsy is crucial for the diagnosis of multiple myeloma. However, the complexity of bone marrow cellular, morphologic, and spatial architecture preserved in trephine samples hinders comprehensive evaluation. To dissect the diverse cellular communities and mosaic tissue habitats, we developed a superpixel-inspired deep learning method (MoSaicNet) that adapts to complex tissue architectures and a cell imbalance aware deep learning pipeline (AwareNet) to enable accurate detection and classification of rare cell types in multiplex immunohistochemistry images. MoSaicNet and AwareNet achieved an AUC of >0.98 for tissue and cellular classification on separate test datasets. Application of MoSaicNet and AwareNet enabled investigation of bone heterogeneity and thickness as well as spatial histology analysis of bone marrow trephine samples from monoclonal gammopathies of undetermined significance (MGUS) and from paired newly diagnosed and posttreatment multiple myeloma. The most significant difference between MGUS and newly diagnosed multiple myeloma (NDMM) samples was not related to cell density but to spatial heterogeneity, with reduced spatial proximity of BLIMP1+ tumor cells to CD8+ cells in MGUS compared with NDMM samples. Following treatment of patients with multiple myeloma, there was a reduction in the density of BLIMP1+ tumor cells, effector CD8+ T cells, and regulatory T cells, indicative of an altered immune microenvironment. Finally, bone heterogeneity decreased following treatment of patients with multiple myeloma. In summary, deep learning-based spatial mapping of bone marrow trephine biopsies can provide insights into the cellular topography of the myeloma marrow microenvironment and complement aspirate-based techniques. SIGNIFICANCE: Spatial analysis of bone marrow trephine biopsies using histology, deep learning, and tailored algorithms reveals the bone marrow architectural heterogeneity and evolution during myeloma progression and treatment.
Asunto(s)
Aprendizaje Profundo , Gammopatía Monoclonal de Relevancia Indeterminada , Mieloma Múltiple , Humanos , Médula Ósea/patología , Mieloma Múltiple/patología , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Biopsia , Microambiente TumoralRESUMEN
BACKGROUND: Efficient biomarker discovery and clinical translation depend on the fast and accurate analytical output from crucial technologies such as multiplex imaging. However, reliable cell classification often requires extensive annotations. Label-efficient strategies are urgently needed to reveal diverse cell distribution and spatial interactions in large-scale multiplex datasets. METHODS: This study proposed Self-supervised Learning for Antigen Detection (SANDI) for accurate cell phenotyping while mitigating the annotation burden. The model first learns intrinsic pairwise similarities in unlabelled cell images, followed by a classification step to map learnt features to cell labels using a small set of annotated references. We acquired four multiplex immunohistochemistry datasets and one imaging mass cytometry dataset, comprising 2825 to 15,258 single-cell images to train and test the model. FINDINGS: With 1% annotations (18-114 cells), SANDI achieved weighted F1-scores ranging from 0.82 to 0.98 across the five datasets, which was comparable to the fully supervised classifier trained on 1828-11,459 annotated cells (-0.002 to -0.053 of averaged weighted F1-score, Wilcoxon rank-sum test, P = 0.31). Leveraging the immune checkpoint markers stained in ovarian cancer slides, SANDI-based cell identification reveals spatial expulsion between PD1-expressing T helper cells and T regulatory cells, suggesting an interplay between PD1 expression and T regulatory cell-mediated immunosuppression. INTERPRETATION: By striking a fine balance between minimal expert guidance and the power of deep learning to learn similarity within abundant data, SANDI presents new opportunities for efficient, large-scale learning for histology multiplex imaging data. FUNDING: This study was funded by the Royal Marsden/ICR National Institute of Health Research Biomedical Research Centre.
Asunto(s)
Investigación Biomédica , Aprendizaje Profundo , Neoplasias Ováricas , Humanos , Femenino , Inmunofenotipificación , Terapia de InmunosupresiónRESUMEN
BACKGROUND: We used a proliferating ligand (APRIL) to construct a ligand-based third generation chimeric antigen receptor (CAR) able to target two myeloma antigens, B-cell maturation antigen (BCMA) and transmembrane activator and CAML interactor. METHODS: The APRIL CAR was evaluated in a Phase 1 clinical trial (NCT03287804, AUTO2) in patients with relapsed, refractory multiple myeloma. Eleven patients received 13 doses, the first 15×106 CARs, and subsequent patients received 75,225,600 and 900×106 CARs in a 3+3 escalation design. RESULTS: The APRIL CAR was well tolerated. Five (45.5%) patients developed Grade 1 cytokine release syndrome and there was no neurotoxicity. However, responses were only observed in 45.5% patients (1×very good partial response, 3×partial response, 1×minimal response). Exploring the mechanistic basis for poor responses, we then compared the APRIL CAR to two other BCMA CARs in a series of in vitro assays, observing reduced interleukin-2 secretion and lack of sustained tumor control by APRIL CAR regardless of transduction method or co-stimulatory domain. There was also impaired interferon signaling of APRIL CAR and no evidence of autoactivation. Thus focusing on APRIL itself, we confirmed similar affinity to BCMA and protein stability in comparison to BCMA CAR binders but reduced binding by cell-expressed APRIL to soluble BCMA and reduced avidity to tumor cells. This indicated either suboptimal folding or stability of membrane-bound APRIL attenuating CAR activation. CONCLUSIONS: The APRIL CAR was well tolerated, but the clinical responses observed in AUTO2 were disappointing. Subsequently, when comparing the APRIL CAR to other BCMA CARs, we observed in vitro functional deficiencies due to reduced target binding by cell-expressed ligand.
Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Mieloma Múltiple/tratamiento farmacológico , Ligandos , Antígeno de Maduración de Linfocitos B/metabolismo , Antígeno de Maduración de Linfocitos B/uso terapéutico , Linfocitos TRESUMEN
BACKGROUND: Chimeric antigen receptor (CAR)-T cells can induce powerful immune responses in patients with hematological malignancies but have had limited success against solid tumors. This is in part due to the immunosuppressive tumor microenvironment (TME) which limits the activity of tumor-infiltrating lymphocytes (TILs) including CAR-T cells. We have developed a next-generation armored CAR (F i-CAR) targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is expressed at high levels in a range of aggressive tumors including poorly prognostic triple-negative breast cancer (TNBC). The F i-CAR-T is designed to release an anti-PD-1 checkpoint inhibitor upon CAR-T cell activation within the TME, facilitating activation of CAR-T cells and TILs while limiting toxicity. METHODS: To bolster potency, we developed a F i-CAR construct capable of IL-2-mediated, NFAT-induced secretion of anti-PD-1 single-chain variable fragments (scFv) within the tumor microenvironment, following ROR1-mediated activation. Cytotoxic responses against TNBC cell lines as well as levels and binding functionality of released payload were analyzed in vitro by ELISA and flow cytometry. In vivo assessment of potency of F i-CAR-T cells was performed in a TNBC NSG mouse model. RESULTS: F i-CAR-T cells released measurable levels of anti-PD-1 payload with 5 h of binding to ROR1 on tumor and enhanced the cytotoxic effects at challenging 1:10 E:T ratios. Treatment of established PDL1 + TNBC xenograft model with F i-CAR-T cells resulted in significant abrogation in tumor growth and improved survival of mice (71 days), compared to non-armored CAR cells targeting ROR1 (F CAR-T) alone (49 days) or in combination with systemically administered anti-PD-1 antibody (57 days). Crucially, a threefold increase in tumor-infiltrating T cells was observed with F i-CAR-T cells and was associated with increased expression of genes related to cytotoxicity, migration and proliferation. CONCLUSIONS: Our next-generation of ROR1-targeting inducible armored CAR platform enables the release of an immune stimulating payload only in the presence of target tumor cells, enhancing the therapeutic activity of the CAR-T cells. This technology provided a significant survival advantage in TNBC xenograft models. This coupled with its potential safety attributes merits further clinical evaluation of this approach in TNBC patients.
Asunto(s)
Receptores Quiméricos de Antígenos , Anticuerpos de Cadena Única , Neoplasias de la Mama Triple Negativas , Animales , Línea Celular Tumoral , Humanos , Ratones , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/metabolismo , Linfocitos T , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/terapia , Microambiente TumoralRESUMEN
Background: The accuracy of multi-parametric MRI (mpMRI) in the pre-operative staging of prostate cancer (PCa) remains controversial. Objective: The purpose of this study was to evaluate the ability of mpMRI to accurately predict PCa extra-prostatic extension (EPE) on a side-specific basis using a risk-stratified 5-point Likert scale. This study also aimed to assess the influence of mpMRI scan quality on diagnostic accuracy. Patients and Methods: We included 124 men who underwent robot-assisted RP (RARP) as part of the NeuroSAFE PROOF study at our centre. Three radiologists retrospectively reviewed mpMRI blinded to RP pathology and assigned a Likert score (1-5) for EPE on each side of the prostate. Each scan was also ascribed a Prostate Imaging Quality (PI-QUAL) score for assessing the quality of the mpMRI scan, where 1 represents the poorest and 5 represents the best diagnostic quality. Outcome measurements and statistical analyses: Diagnostic performance is presented for the binary classification of EPE, including 95% confidence intervals and the area under the receiver operating characteristic curve (AUC). Results: A total of 231 lobes from 121 men (mean age 56.9 years) were evaluated. Of these, 39 men (32.2%), or 43 lobes (18.6%), had EPE. A Likert score ≥3 had a sensitivity (SE), specificity (SP), NPV, and PPV of 90.4%, 52.3%, 96%, and 29.9%, respectively, and the AUC was 0.82 (95% CI: 0.77-0.86). The AUC was 0.76 (95% CI: 0.64-0.88), 0.78 (0.72-0.84), and 0.92 (0.88-0.96) for biparametric scans, PI-QUAL 1-3, and PI-QUAL 4-5 scans, respectively. Conclusions: MRI can be used effectively by genitourinary radiologists to rule out EPE and help inform surgical planning for men undergoing RARP. EPE prediction was more reliable when the MRI scan was (a) multi-parametric and (b) of a higher image quality according to the PI-QUAL scoring system.
RESUMEN
INTRODUCTION: Multiparametric MRI (mpMRI) is now widely used to risk stratify men with a suspicion of prostate cancer and identify suspicious regions for biopsy. However, the technique has modest specificity and a high false-positive rate, especially in men with mpMRI scored as indeterminate (3/5) or likely (4/5) to have clinically significant cancer (csPCa) (Gleason ≥3+4). Advanced MRI techniques have emerged which seek to improve this characterisation and could predict biopsy results non-invasively. Before these techniques are translated clinically, robust histological and clinical validation is required. METHODS AND ANALYSIS: This study aims to clinically validate two advanced MRI techniques in a prospectively recruited cohort of men suspected of prostate cancer. Histological analysis of men undergoing biopsy or prostatectomy will be used for biological validation of biomarkers derived from Vascular and Extracellular Restricted Diffusion for Cytometry in Tumours and Luminal Water imaging. In particular, prostatectomy specimens will be processed using three-dimension printed patient-specific moulds to allow for accurate MRI and histology mapping. The index tests will be compared with the histological reference standard to derive false positive rate and true positive rate for men with mpMRI scores which are indeterminate (3/5) or likely (4/5) to have clinically significant prostate cancer (csPCa). Histopathological validation from both biopsy and prostatectomy samples will provide the best ground truth in validating promising MRI techniques which could predict biopsy results and help avoid unnecessary biopsies in men suspected of prostate cancer. ETHICS AND DISSEMINATION: Ethical approval was granted by the London-Queen Square Research Ethics Committee (19/LO/1803) on 23 January 2020. Results from the study will be presented at conferences and submitted to peer-reviewed journals for publication. Results will also be available on ClinicalTrials.gov. TRIAL REGISTRATION NUMBER: NCT04792138.
Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Biomarcadores , Humanos , Biopsia Guiada por Imagen , Imagen por Resonancia Magnética , Masculino , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patologíaRESUMEN
Objectives: To assess the clinical outcomes of mpMRI before biopsy and evaluate the space remaining for novel biomarkers. Methods: The INNOVATE study was set up to evaluate the validity of novel fluidic biomarkers in men with suspected prostate cancer who undergo pre-biopsy mpMRI. We report the characteristics of this clinical cohort, the distribution of clinical serum biomarkers, PSA and PSA density (PSAD), and compare the mpMRI Likert scoring system to the Prostate Imaging-Reporting and Data System v2.1 (PI-RADS) in men undergoing biopsy. Results: 340 men underwent mpMRI to evaluate suspected prostate cancer. 193/340 (57%) men had subsequent MRI-targeted prostate biopsy. Clinically significant prostate cancer (csigPCa), i.e., overall Gleason ≥ 3 + 4 of any length OR maximum cancer core length (MCCL) ≥4 mm of any grade including any 3 + 3, was found in 96/195 (49%) of biopsied patients. Median PSA (and PSAD) was 4.7 (0.20), 8.0 (0.17), and 9.7 (0.31) ng/mL (ng/mL/mL) in mpMRI scored Likert 3,4,5 respectively for men with csigPCa on biopsy. The space for novel biomarkers was shown to be within the group of men with mpMRI scored Likert3 (178/340) and 4 (70/350), in whom an additional of 40% (70/178) men with mpMRI-scored Likert3, and 37% (26/70) Likert4 could have been spared biopsy. PSAD is already considered clinically in this cohort to risk stratify patients for biopsy, despite this 67% (55/82) of men with mpMRI-scored Likert3, and 55% (36/65) Likert4, who underwent prostate biopsy had a PSAD below a clinical threshold of 0.15 (or 0.12 for men aged <50 years). Different thresholds of PSA and PSAD were assessed in mpMRI-scored Likert4 to predict csigPCa on biopsy, to achieve false negative levels of ≤5% the proportion of patients whom who test as above the threshold were unsuitably high at 86 and 92% of patients for PSAD and PSA respectively. When PSA was re tested in a sub cohort of men repeated PSAD showed its poor reproducibility with 43% (41/95) of patients being reclassified. After PI-RADS rescoring of the biopsied lesions, 66% (54/82) of the Likert3 lesions received a different PI-RADS score. Conclusions: The addition of simple biochemical and radiological markers (Likert and PSAD) facilitate the streamlining of the mpMRI-diagnostic pathway for suspected prostate cancer but there remains scope for improvement, in the introduction of novel biomarkers for risk assessment in Likert3 and 4 patients, future application of novel biomarkers tested in a Likert cohort would also require re-optimization around Likert3/PI-RADS2, as well as reproducibility testing.
RESUMEN
PURPOSE: Immune dysregulation is described in multiple myeloma. While preclinical models suggest a role for altered T-cell immunity in disease progression, the contribution of immune dysfunction to clinical outcomes remains unclear. We aimed to characterize marrow-infiltrating T cells in newly diagnosed patients and explore associations with outcomes of first-line therapy. EXPERIMENTAL DESIGN: We undertook detailed characterization of T cells from bone marrow (BM) samples, focusing on immune checkpoints and features of immune dysfunction, correlating with clinical features and progression-free survival. RESULTS: We found that patients with multiple myeloma had greater abundance of BM regulatory T cells (Tregs) which, in turn, expressed higher levels of the activation marker CD25 compared with healthy donors. Patients with higher frequencies of Tregs had shorter PFS and a distinct Treg immune checkpoint profile (increased PD-1, LAG-3) compared with patients with lower frequencies of Tregs. Analysis of CD4 and CD8 effectors revealed that low CD4effector (CD4eff):Treg ratio and increased frequency of PD-1-expressing CD4eff cells were independent predictors of early relapse over and above conventional risk factors, such as genetic risk and depth of response. Ex vivo functional analysis and RNA sequencing revealed that CD4 and CD8 cells from patients with greater abundance of CD4effPD-1+ cells displayed transcriptional and secretory features of dysfunction. CONCLUSIONS: BM-infiltrating T-cell subsets, specifically Tregs and PD-1-expressing CD4 effectors, negatively influence clinical outcomes in newly diagnosed patients. Pending confirmation in larger cohorts and further mechanistic work, these immune parameters may inform new risk models, and present potential targets for immunotherapeutic strategies.
Asunto(s)
Médula Ósea/patología , Linfocitos Infiltrantes de Tumor/inmunología , Mieloma Múltiple/etiología , Mieloma Múltiple/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T Reguladores/inmunología , Biomarcadores de Tumor , Estudios de Casos y Controles , Citocinas/metabolismo , Femenino , Humanos , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Masculino , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/mortalidad , Pronóstico , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patologíaRESUMEN
Background Biologic specificity of diffusion MRI in relation to prostate cancer aggressiveness may improve by examining separate components of the diffusion MRI signal. The Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumors (VERDICT) model estimates three distinct signal components and associates them to (a) intracellular water, (b) water in the extracellular extravascular space, and (c) water in the microvasculature. Purpose To evaluate the repeatability, image quality, and diagnostic utility of intracellular volume fraction (FIC) maps obtained with VERDICT prostate MRI and to compare those maps with apparent diffusion coefficient (ADC) maps for Gleason grade differentiation. Materials and Methods Seventy men (median age, 62.2 years; range, 49.5-82.0 years) suspected of having prostate cancer or undergoing active surveillance were recruited to a prospective study between April 2016 and October 2017. All men underwent multiparametric prostate and VERDICT MRI. Forty-two of the 70 men (median age, 67.7 years; range, 50.0-82.0 years) underwent two VERDICT MRI acquisitions to assess repeatability of FIC measurements obtained with VERDICT MRI. Repeatability was measured with use of intraclass correlation coefficients (ICCs). The image quality of FIC and ADC maps was independently evaluated by two board-certified radiologists. Forty-two men (median age, 64.8 years; range, 49.5-79.6 years) underwent targeted biopsy, which enabled comparison of FIC and ADC metrics in the differentiation between Gleason grades. Results VERDICT MRI FIC demonstrated ICCs of 0.87-0.95. There was no significant difference between image quality of ADC and FIC maps (score, 3.1 vs 3.3, respectively; P = .90). FIC was higher in lesions with a Gleason grade of at least 3+4 compared with benign and/or Gleason grade 3+3 lesions (mean, 0.49 ± 0.17 vs 0.31 ± 0.12, respectively; P = .002). The difference in ADC between these groups did not reach statistical significance (mean, 1.42 vs 1.16 × 10-3 mm2/sec; P = .26). Conclusion Fractional intracellular volume demonstrates high repeatability and image quality and enables better differentiation of a Gleason 4 component cancer from benign and/or Gleason 3+3 histology than apparent diffusion coefficient. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Sigmund and Rosenkrantz in this issue.
Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Clasificación del Tumor/métodos , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Humanos , Masculino , Persona de Mediana Edad , Próstata/patología , Neoplasias de la Próstata/patologíaRESUMEN
The VERDICT framework for modelling diffusion MRI data aims to relate parameters from a biophysical model to histological features used for tumour grading in prostate cancer. Validation of the VERDICT model is necessary for clinical use. This study compared VERDICT parameters obtained ex vivo with histology in five specimens from radical prostatectomy. A patient-specific 3D-printed mould was used to investigate the effects of fixation on VERDICT parameters and to aid registration to histology. A rich diffusion data set was acquired in each ex vivo prostate before and after fixation. At both time points, data were best described by a two-compartment model: the model assumes that an anisotropic tensor compartment represents the extracellular space and a restricted sphere compartment models the intracellular space. The effect of fixation on model parameters associated with tissue microstructure was small. The patient-specific mould minimized tissue deformations and co-localized slices, so that rigid registration of MRI to histology images allowed region-based comparison with histology. The VERDICT estimate of the intracellular volume fraction corresponded to histological indicators of cellular fraction, including high values in tumour regions. The average sphere radius from VERDICT, representing the average cell size, was relatively uniform across samples. The primary diffusion direction from the extracellular compartment of the VERDICT model aligned with collagen fibre patterns in the stroma obtained by structure tensor analysis. This confirmed the biophysical relationship between ex vivo VERDICT parameters and tissue microstructure from histology.
Asunto(s)
Imagen por Resonancia Magnética , Próstata/diagnóstico por imagen , Fijación del Tejido , Anisotropía , Tamaño de la Célula , Humanos , Masculino , Modelos BiológicosRESUMEN
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
RESUMEN
Iron is suggested to play a detrimental role in the progression of chronic kidney disease (CKD). The kidney recycles iron back into the circulation. However, the localization of proteins relevant for physiological tubular iron handling and their potential role in CKD remain unclear. We examined associations between iron deposition, expression of iron handling proteins and tubular injury in kidney biopsies from CKD patients and healthy controls using immunohistochemistry. Iron was deposited in proximal (PT) and distal tubules (DT) in 33% of CKD biopsies, predominantly in pathologies with glomerular dysfunction, but absent in controls. In healthy kidney, PT contained proteins required for iron recycling including putative iron importers ZIP8, ZIP14, DMT1, iron storage proteins L- and H-ferritin and iron exporter ferroportin, while DT only contained ZIP8, ZIP14, and DMT1. In CKD, iron deposition associated with increased intensity of iron importers (ZIP14, ZIP8), storage proteins (L-, H-ferritin), and/or decreased ferroportin abundance. This demonstrates that tubular iron accumulation may result from increased iron uptake and/or inadequate iron export. Iron deposition associated with oxidative injury as indicated by heme oxygenase-1 abundance. In conclusion, iron deposition is relatively common in CKD, and may result from altered molecular iron handling and may contribute to renal injury.
Asunto(s)
Hierro/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Apoferritinas/metabolismo , Biopsia , Proteínas de Transporte de Catión/metabolismo , Femenino , Hemo-Oxigenasa 1/metabolismo , Humanos , Inmunohistoquímica , Masculino , PrevalenciaRESUMEN
Non-dysplastic Barrett's oesophagus (NDBE) occurs as a consequence of an inflammatory response triggered through prolonged gastro-oesophageal reflux and it may precede the development of oesophageal adenocarcinoma. NF-κB activation as a result of the inflammatory response has been shown in NDBE, but the possible mechanism involved in the process is unknown. The aim of this study was to assess, using immunohistochemistry, Survivin and Bcl3 expression as potential biomarkers for NF-κB activation along the oesophageal metaplasia-dysplasia-adenocarcinoma sequence. Survivin is an NF-κB-inducible anti-apoptotic protein, and Bcl3 is a negative regulator of NF-κB. There was progressive upregulation of Survivin expression along the oesophageal metaplasia-dysplasia-adenocarcinoma sequence. Bcl3 expression was upregulated in non-dysplastic Barrett's oesophagus, low-grade, high-grade dysplasia and oesophageal adenocarcinoma when compared to squamous group. The study shows the differential expression of Bcl3 between the squamous and Barrett's stage, suggesting that Bcl3 could be a surrogate marker for early event involving constitutive NF-κB activation. In addition, the study suggests that NF-κB activation may infer resistance to apoptosis through the expression of anti-apoptotic genes such as Survivin, which showed progressive increase in expression throughout the oesophageal metaplasia-dysplasia-adenocarcinoma sequence. This ability to avoid apoptosis may underlie the persistence and malignant predisposition of Barrett's metaplasia.
Asunto(s)
Adenocarcinoma/química , Esófago de Barrett/metabolismo , Biomarcadores de Tumor/análisis , Transformación Celular Neoplásica/química , Neoplasias Esofágicas/química , Esófago/química , Inmunohistoquímica , Proteínas Inhibidoras de la Apoptosis/análisis , FN-kappa B/análisis , Proteínas Proto-Oncogénicas/análisis , Factores de Transcripción/análisis , Adenocarcinoma/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis , Proteínas del Linfoma 3 de Células B , Esófago de Barrett/patología , Biopsia , Transformación Celular Neoplásica/patología , Neoplasias Esofágicas/patología , Esófago/patología , Femenino , Humanos , Masculino , Metaplasia , Persona de Mediana Edad , Transducción de Señal , Survivin , Adulto JovenRESUMEN
B-cell maturation antigen (BCMA) is a promising therapeutic target for multiple myeloma (MM), but expression is variable, and early reports of BCMA targeting chimeric antigen receptors (CARs) suggest antigen downregulation at relapse. Dual-antigen targeting increases targetable tumor antigens and reduces the risk of antigen-negative disease escape. "A proliferation-inducing ligand" (APRIL) is a natural high-affinity ligand for BCMA and transmembrane activator and calcium-modulator and cyclophilin ligand (TACI). We quantified surface tumor expression of BCMA and TACI on primary MM cells (n = 50). All cases tested expressed BCMA, and 39 (78%) of them also expressed TACI. We engineered a third-generation APRIL-based CAR (ACAR), which killed targets expressing either BCMA or TACI (P < .01 and P < .05, respectively, cf. control, effector-to-target [E:T] ratio 16:1). We confirmed cytolysis at antigen levels similar to those on primary MM, at low E:T ratios (56.2% ± 3.9% killing of MM.1s at 48 h, E:T ratio 1:32; P < .01) and of primary MM cells (72.9% ± 12.2% killing at 3 days, E:T ratio 1:1; P < .05, n = 5). Demonstrating tumor control in the absence of BCMA, we maintained cytolysis of primary tumor expressing both BCMA and TACI in the presence of a BCMA-targeting antibody. Furthermore, using an intramedullary myeloma model, ACAR T cells caused regression of an established tumor within 2 days. Finally, in an in vivo model of tumor escape, there was complete ACAR-mediated tumor clearance of BCMA+TACI- and BCMA-TACI+ cells, and a single-chain variable fragment CAR targeting BCMA alone resulted in outgrowth of a BCMA-negative tumor. These results support the clinical potential of this approach.
Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Antígeno de Maduración de Linfocitos B/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Receptores Quiméricos de Antígenos/uso terapéutico , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Animales , Antineoplásicos Inmunológicos/síntesis química , Antineoplásicos Inmunológicos/química , Línea Celular Tumoral , Citotoxicidad Inmunológica , Humanos , Ligandos , Ratones , Terapia Molecular Dirigida , Receptores Quiméricos de Antígenos/síntesis química , Receptores Quiméricos de Antígenos/química , Proteína Activadora Transmembrana y Interactiva del CAML/química , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/químicaRESUMEN
Background Systemic cancer spread is preceded by the establishment of a permissive microenvironment in the target tissue of metastasis - the premetastatic niche. As crucial players in establishment of the pre-metastatic niche, myeloid derived suppressor cells (MDSC) release S100A8/A9, an exosomal protein that contributes to metastasis, angiogenesis, and immune suppression. We report the application of antibody-based single-photon emission computed tomography (SPECT) for detection of S100A8/A9 in vivo as an imaging marker for pre-metastatic tissue priming. Methods A syngeneic model system for invasive breast cancer with (4T1.2) or without (67NR) the tendency to form lung metastasis was established in BALB/c mice. A SPECT-probe has been generated and tested for visualization of S100A9 release. Tumor-associated changes in numbers and fuction of immune cells in pre-metastatic tissue were evaluated by flow cytometry and confocal microscopy. Results S100A8/A9 imaging reflected MDSC abundance and the establishment of an immunosuppressive environment in pre-metastatic lung tissue (activity 4T1.2 vs. healthy control: 0.95 vs. 0.45 %ID; p<0.001). The S100A8/A9 imaging signal in the pre-metastatic lung correlated with the subsequent metastatic tumor burden in the same organ (r2=0.788; p<0.0001). CCL2 blockade and the consecutive inhibition of premetastatic niche establishment was clearly depicted by S100A9-SPECT (lung activity untreated vs. treated: 2 vs, 1.4 %ID). Conclusion We report S100A8/A9 as a potent imaging biomarker for tumor-mediated immune remodeling with potential applications in basic research and clinical oncology.
Asunto(s)
Neoplasias de la Mama/secundario , Calgranulina A/análisis , Calgranulina B/análisis , Neoplasias Pulmonares/secundario , Metástasis de la Neoplasia/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Ratones Endogámicos BALB C , Microscopía ConfocalRESUMEN
Cancer cells tend to metastasize first to tumor-draining lymph nodes, but the mechanisms mediating cancer cell invasion into the lymphatic vasculature remain little understood. Here, we show that in the human breast tumor microenvironment (TME), the presence of increased numbers of RORγt+ group 3 innate lymphoid cells (ILC3) correlates with an increased likelihood of lymph node metastasis. In a preclinical mouse model of breast cancer, CCL21-mediated recruitment of ILC3 to tumors stimulated the production of the CXCL13 by TME stromal cells, which in turn promoted ILC3-stromal interactions and production of the cancer cell motile factor RANKL. Depleting ILC3 or neutralizing CCL21, CXCL13, or RANKL was sufficient to decrease lymph node metastasis. Our findings establish a role for RORγt+ILC3 in promoting lymphatic metastasis by modulating the local chemokine milieu of cancer cells in the TME. Cancer Res; 77(5); 1083-96. ©2017 AACR.
Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos/inmunología , Linfocitos/patología , Receptores Nucleares Huérfanos/inmunología , Animales , Línea Celular Tumoral , Quimiocina CCL21/inmunología , Quimiocina CXCL13/inmunología , Femenino , Humanos , Inmunidad Innata , Metástasis Linfática , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Metástasis de la Neoplasia , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
BACKGROUND: Whilst multi-parametric magnetic resonance imaging (mp-MRI) has been a significant advance in the diagnosis of prostate cancer, scanning all patients with elevated prostate specific antigen (PSA) levels is considered too costly for widespread National Health Service (NHS) use, as the predictive value of PSA levels for significant disease is poor. Despite the fact that novel blood and urine tests are available which may predict aggressive disease better than PSA, they are not routinely employed due to a lack of clinical validity studies. Furthermore approximately 40 % of mp-MRI studies are reported as indeterminate, which can lead to repeat examinations or unnecessary biopsy with associated patient anxiety, discomfort, risk and additional costs. METHODS/DESIGN: We aim to clinically validate a panel of minimally invasive promising blood and urine biomarkers, to better select patients that will benefit from a multiparametric prostate MRI. We will then test whether the performance of the mp-MRI can be improved by the addition of an advanced diffusion-weighted MRI technique, which uses a biophysical model to characterise tissue microstructure called VERDICT; Vascular and Extracellular Restricted Diffusion for Cytometry in Tumours. INNOVATE is a prospective single centre cohort study in 365 patients. mp-MRI will act as the reference standard for the biomarker panel. A clinical outcome based reference standard based on biopsy, mp-MRI and follow-up will be used for VERDICT MRI. DISCUSSION: We expect the combined effect of biomarkers and VERDICT MRI will improve care by better detecting aggressive prostate cancer early and make mp-MRI before biopsy economically viable for universal NHS adoption. TRIAL REGISTRATION: INNOVATE is registered on ClinicalTrials.gov, with reference NCT02689271 .