RESUMEN
Bacteria have evolved diverse antiviral defence mechanisms to protect themselves against phage infection. Phages integrated into bacterial chromosomes, known as prophages, also encode defences that protect the bacterial hosts in which they reside. Here, we identify a type of anti-phage defence that interferes with the virion assembly pathway of invading phages. The protein that mediates this defence, which we call Tab (for 'Tail assembly blocker'), is constitutively expressed from a Pseudomonas aeruginosa prophage. Tab allows the invading phage replication cycle to proceed, but blocks assembly of the phage tail, thus preventing formation of infectious virions. While the infected cell dies through the activity of the replicating phage lysis proteins, there is no release of infectious phage progeny, and the bacterial community is thereby protected from a phage epidemic. Prophages expressing Tab are not inhibited during their own lytic cycle because they express a counter-defence protein that interferes with Tab function. Thus, our work reveals an anti-phage defence that operates by blocking virion assembly, thereby both preventing formation of phage progeny and allowing destruction of the infected cell due to expression of phage lysis genes.
Asunto(s)
Bacteriófagos , Infecciones por Pseudomonas , Humanos , Bacteriófagos/genética , Profagos/genética , Infecciones por Pseudomonas/microbiología , Virión/genéticaRESUMEN
Temperate phages are pervasive in nature, existing within bacterial cells in a form known as prophages. In this state, survival of the phage is intricately tied to the survival of the bacterial host. As a result, prophages often encode genes that increase bacterial fitness. One important way to increase survival is to provide defense against competing phages. Recent work reviewed here reveals that prophages provide a diverse and robust reservoir of antiphage defense systems that likely play a major role in bacterial-phage dynamics.