Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunohorizons ; 7(12): 872-885, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147032

RESUMEN

Our bodies are home to individual-specific microbial ecosystems that have recently been found to be modified by cancer immunotherapies. The interaction between the gut microbiome and islet autoimmunity leading to type I diabetes (T1D) is well described and highlights the microbiome contribution during the onset and T1D development in animals and humans. As cancer immunotherapies induce gut microbiome perturbations and immune-mediated adverse events in susceptible patients, we hypothesized that NOD mice can be used as a predictive tool to investigate the effects of anti-PD-1 treatment on the onset and severity of T1D, and how microbiota influences immunopathology. In this longitudinal study, we showed that anti-PD-1 accelerated T1D onset, increased glutamic acid decarboxylase-reactive T cell frequency in spleen, and precipitated destruction of ß cells, triggering high glucose levels and pancreatic islet reduction. Anti-PD-1 treatment also resulted in temporal microbiota changes and lower diversity characteristic of T1D. Finally, we identified known insulin-resistance regulating bacteria that were negatively correlated with glucose levels, indicating that anti-PD-1 treatment impacts the early gut microbiota composition. Moreover, an increase of mucin-degrading Akkermansia muciniphila points to alterations of barrier function and immune system activation. These results highlight the ability of microbiota to readily respond to therapy-triggered pathophysiological changes as rescuers (Bacteroides acidifaciens and Parabacteroides goldsteinii) or potential exacerbators (A. muciniphila). Microbiome-modulating interventions may thus be promising mitigation strategies for immunotherapies with high risk of immune-mediated adverse events.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Inhibidores de Puntos de Control Inmunológico , Animales , Humanos , Ratones , Glucosa , Estudios Longitudinales , Ratones Endogámicos NOD , Neoplasias , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/farmacología
2.
Transl Psychiatry ; 13(1): 95, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941248

RESUMEN

The microbiome-gut-brain axis plays a role in anxiety, the stress response and social development, and is of growing interest in neuropsychiatric conditions. The gut microbiota shows compositional alterations in a variety of psychiatric disorders including depression, generalised anxiety disorder (GAD), autism spectrum disorder (ASD) and schizophrenia but studies investigating the gut microbiome in social anxiety disorder (SAD) are very limited. Using whole-genome shotgun analysis of 49 faecal samples (31 cases and 18 sex- and age-matched controls), we analysed compositional and functional differences in the gut microbiome of patients with SAD in comparison to healthy controls. Overall microbiota composition, as measured by beta-diversity, was found to be different between the SAD and control groups and several taxonomic differences were seen at a genus- and species-level. The relative abundance of the genera Anaeromassillibacillus and Gordonibacter were elevated in SAD, while Parasuterella was enriched in healthy controls. At a species-level, Anaeromassilibacillus sp An250 was found to be more abundant in SAD patients while Parasutterella excrementihominis was higher in controls. No differences were seen in alpha diversity. In relation to functional differences, the gut metabolic module 'aspartate degradation I' was elevated in SAD patients. In conclusion, the gut microbiome of patients with SAD differs in composition and function to that of healthy controls. Larger, longitudinal studies are warranted to validate these preliminary results and explore the clinical implications of these microbiome changes.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Microbiota , Fobia Social , Esquizofrenia , Humanos , Microbioma Gastrointestinal/fisiología
3.
J Nutr ; 153(1): 96-105, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36913483

RESUMEN

BACKGROUND: Natural products rich in polyphenols have been shown to lower plasma trimethylamine-n-oxide (TMAO) known for its proatherogenic effects by modulating the intestinal microbiota. OBJECTIVES: We aimed to determine the impact of Fruitflow, a water-soluble tomato extract, on TMAO, fecal microbiota, and plasma and fecal metabolites. METHODS: Overweight and obese adults (n = 22, BMI 28-35 kg/m2) were included in a double-blind, placebo-controlled, cross-over study receiving 2×150 mg Fruitflow per day or placebo (maltodextrin) for 4 wk with a 6-week wash-out between interventions. Stool, blood, and urine samples were collected to assess changes in plasma TMAO (primary outcome) as well as fecal microbiota, fecal and plasma metabolites, and urine TMAO (secondary outcomes). In a subgroup (n = 9), postprandial TMAO was evaluated following a choline-rich breakfast (∼450 mg). Statistical methods included paired t-tests or Wilcoxon signed rank tests and permutational multivariate analysis of variance. RESULTS: Fruitflow, but not placebo, reduced fasting levels of plasma (-1.5 µM, P ≤ 0.05) and urine (-19.1 µM, P ≤ 0.01) TMAO as well as plasma lipopolysaccharides (-5.3 ng/mL, P ≤ 0.05) from baseline to the end of intervention. However, these changes were significant only for urine TMAO levels when comparing between the groups (P ≤ 0.05). Changes in microbial beta, but not alpha, diversity paralleled this with a significant difference in Jaccard distance-based Principal Component (P ≤ 0.05) as well as decreases in Bacteroides, Ruminococccus, and Hungatella and increases in Alistipes when comparing between and within groups (P ≤ 0.05, respectively). There were no between-group differences in SCFAs and bile acids (BAs) in both faces and plasma but several changes within groups such as an increase in fecal cholic acid or plasma pyruvate with Fruitflow (P ≤ 0.05, respectively). An untargeted metabolomic analysis revealed TMAO as the most discriminant plasma metabolite between groups (P ≤ 0.05). CONCLUSIONS: Our results support earlier findings that polyphenol-rich extracts can lower plasma TMAO in overweight and obese adults related to gut microbiota modulation. This trial was registered at clinicaltrials.gov as NCT04160481 (https://clinicaltrials.gov/ct2/show/NCT04160481?term= Fruitflow&draw= 2&rank= 2).


Asunto(s)
Microbioma Gastrointestinal , Solanum lycopersicum , Adulto , Humanos , Sobrepeso , Estudios Cruzados , Obesidad , Metilaminas/metabolismo , Óxidos
4.
Gut Microbes ; 14(1): 2149023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420990

RESUMEN

The mechanisms by which early microbial colonizers of the neonate influence gut development are poorly understood. Bacterial bile salt hydrolase (BSH) acts as a putative colonization factor that influences bile acid signatures and microbe-host signaling pathways and we considered whether this activity can influence infant gut development. In silico analysis of the human neonatal gut metagenome confirmed that BSH enzyme sequences are present as early as one day postpartum. Gastrointestinal delivery of cloned BSH to immature gnotobiotic mice accelerated shortening of the colon and regularized gene expression profiles, with monocolonised mice more closely resembling conventionally raised animals. In situ expression of BSH decreased markers of cell proliferation (Ki67, Hes2 and Ascl2) and strongly increased expression of ALPI, a marker of cell differentiation and barrier function. These data suggest an evolutionary paradigm whereby microbial BSH activity potentially influences bacterial colonization and in-turn benefits host gastrointestinal maturation.


Asunto(s)
Microbioma Gastrointestinal , Transcriptoma , Femenino , Humanos , Ratones , Animales , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Tracto Gastrointestinal/microbiología , Bacterias/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
5.
Gut Microbes ; 14(1): 2094664, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35916669

RESUMEN

Probiotics have been used for decades to alleviate the negative side-effects of oral antibiotics, but our mechanistic understanding on how they work is so far incomplete. Here, we performed a metagenomic analysis of the fecal microbiota in participants who underwent a 14-d Helicobacter pylori eradication therapy with or without consumption of a multi-strain probiotic intervention (L. paracasei CNCM I-1518, L. paracasei CNCM I-3689, L. rhamnosus CNCM I-3690, and four yogurt strains) in a randomized, double-blinded, controlled clinical trial. Using a strain-level analysis for detection and metagenomic determination of replication rate, ingested strains were detected and replicated transiently in fecal samples and in the gut during and following antibiotic administration. Consumption of the fermented milk product led to a significant, although modest, improvement in the recovery of microbiota composition. Stratification of participants into two groups based on the degree to which their microbiome recovered showed i) a higher fecal abundance of the probiotic L. paracasei and L. rhamnosus strains and ii) an elevated replication rate of one strain (L. paracasei CNCMI-1518) in the recovery group. Collectively, our findings show a small but measurable benefit of a fermented milk product on microbiome recovery after antibiotics, which was linked to the detection and replication of specific probiotic strains. Such functional insight can form the basis for the development of probiotic-based intervention aimed to protect gut microbiome from drug treatments.


Asunto(s)
Productos Lácteos Cultivados , Microbioma Gastrointestinal , Probióticos , Antibacterianos/uso terapéutico , Heces , Humanos , Probióticos/farmacología , Probióticos/uso terapéutico
6.
Anaerobe ; 73: 102508, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34974183

RESUMEN

Coconut coir (a lignin-rich, organic material) is widely used for its commercial and economic benefits. In this study, crossbred (exotic) and Kankrej (indigenous) breeds of cattle were fed diets containing 7 or 14% coconut coir. Metagenomic analyses (16S rRNA gene amplicon and shotgun sequencing) were used to characterize the microbial community in the rumen and fecal samples along with their functional capabilities. Both amplicon and shotgun analyses revealed the predominance of bacterial phyla, Bacteroidetes, Firmicutes, Actinobacteria and Fibrobacter in ruminal liquid, ruminal solid and fecal samples. 16S rRNA gene amplicon sequencing revealed a total of 18 different bacterial taxa were found to be enriched exclusively in the animals fed with 14% coir. The shotgun analysis revealed abundance of bacterial genera, Fibrobacter, Clostridium, Prevotella, Butyrivibrio, and Ruminococcus in both liquid and solid fractions of ruminal contents, while in the fecal sample, Bacteroides, Alistipes, Plaudibacter, Parabacteroides, Porphyromonas, and Victivallis and archaeal genus, Methanocorpusculum were abundant. The functional analysis based on dbCAN database suggested that among the Glycoside hydrolase family, genes that encode oligosaccharide degrading enzymes, GH3, GH13 (p-value < 0.05), and GH43 were abundant in the feces. In ruminal solid, cellulase encoding the GH5 family was abundant. Also, lignocellulosic binding modules encoded by the CBM family, including cellulose (CBM3) and hemicellulose binding modules (CBM32 and CBM67) were abundant. Thus, the study indicated the enrichment of lignocellulosic enzymes in ruminal contents in response to feeding the coconut coir, which could be mined for potential biofuel production and other biotechnological applications.


Asunto(s)
Metagenoma , Rumen , Animales , Bovinos , Dieta/veterinaria , Heces , Lignina , ARN Ribosómico 16S/genética , Rumen/microbiología
7.
mSystems ; 6(4): e0015221, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34282937

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen and often colonizes pigs. To lower the risk of MRSA transmission to humans, a reduction of MRSA prevalence and/or load in pig farms is needed. The nasal microbiome contains commensal species that may protect against MRSA colonization and may be used to develop competitive exclusion strategies. To obtain a comprehensive understanding of the species that compete with MRSA in the developing porcine nasal microbiome, and the moment of MRSA colonization, we analyzed nasal swabs from piglets in two litters. The swabs were taken longitudinally, starting directly after birth until 6 weeks. Both 16S rRNA and tuf gene sequencing data with different phylogenetic resolutions and complementary culture-based and quantitative real-time PCR (qPCR)-based MRSA quantification data were collected. We employed a compositionally aware bioinformatics approach (CoDaSeq + rmcorr) for analysis of longitudinal measurements of the nasal microbiota. The richness and diversity in the developing nasal microbiota increased over time, albeit with a reduction of Firmicutes and Actinobacteria, and an increase of Proteobacteria. Coabundant groups (CAGs) of species showing strong positive and negative correlation with colonization of MRSA and S. aureus were identified. Combining 16S rRNA and tuf gene sequencing provided greater Staphylococcus species resolution, which is necessary to inform strategies with potential protective effects against MRSA colonization in pigs. IMPORTANCE The large reservoir of methicillin-resistant Staphylococcus aureus (MRSA) in pig farms imposes a significant zoonotic risk. An effective strategy to reduce MRSA colonization in pig farms is competitive exclusion whereby MRSA colonization can be reduced by the action of competing bacterial species. We complemented 16S rRNA gene sequencing with Staphylococcus-specific tuf gene sequencing to identify species anticorrelating with MRSA colonization. This approach allowed us to elucidate microbiome dynamics and identify species that are negatively and positively associated with MRSA, potentially suggesting a route for its competitive exclusion.

8.
Int J Biol Macromol ; 138: 1019-1028, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31356936

RESUMEN

Fungal ß-glucosidases (BGLs) have unceasingly utilized for industrial applications and recently, they possess a crucial role in bioethanol production. To engineer the BGLs, understanding their structures, intermolecular interactions and molecular docking is requisite, which is carried out in this work based on the glycosyl hydrolase (GH) family. Among 12 BGLs, protein sequence, structure, and conserved sites of GH1 BGLs are evidently diverged to GH3 BGLs. Even biophysical and chemical features of GH1 BGLs are utterly varied from GH3 BGLs, wherein pI, instability index, aliphatic index, surface & buried area, thermostability and thermodynamics are included. On the contrary, aromatic, charged, polar, and hydrophobic residues are significantly higher in GH1 BGLs as compared to that of GH3 BGLs. Moreover, molecular docking of BGLs with 12 substrates and 5 inhibitors revealed that the GH3 BGLs efficiently bound with laminaribose, gentibiose, aryl- and cello-substrates than GH1 BGLs; however, GH3 BGLs are noticeably inhibited by glucose, glucono-δ-lactone, methanetriamine. So, structural insight of BGLs provides an explicit knowledge regarding the catalytic residues, biophysical chemistry and notable binding ligands, which are most important factors for enzyme engineering.


Asunto(s)
Proteínas Fúngicas/química , Dominios y Motivos de Interacción de Proteínas , beta-Glucosidasa/química , Secuencia de Aminoácidos , Proteínas Fúngicas/genética , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Filogenia , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Termodinámica , beta-Glucosidasa/genética
9.
Syst Appl Microbiol ; 41(4): 374-385, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29555111

RESUMEN

Zebu (Bos indicus) is a domestic cattle species originating from the Indian subcontinent and now widely domesticated on several continents. In this study, we were particularly interested in understanding the functionally active rumen microbiota of an important Zebu breed, the Gir, under different dietary regimes. Metagenomic and metatranscriptomic data were compared at various taxonomic levels to elucidate the differential microbial population and its functional dynamics in Gir cattle rumen under different roughage dietary regimes. Different proportions of roughage rather than the type of roughage (dry or green) modulated microbiome composition and the expression of its gene pool. Fibre degrading bacteria (i.e. Clostridium, Ruminococcus, Eubacterium, Butyrivibrio, Bacillus and Roseburia) were higher in the solid fraction of rumen (P<0.01) compared to the liquid fraction, whereas bacteria considered to be utilizers of the degraded product (i.e. Prevotella, Bacteroides, Parabacteroides, Paludibacter and Victivallis) were dominant in the liquid fraction (P<0.05). Likewise, expression of fibre degrading enzymes and related carbohydrate binding modules (CBMs) occurred in the solid fraction. When metagenomic and metatranscriptomic data were compared, it was found that some genera and species were transcriptionally more active, although they were in low abundance, making an important contribution to fibre degradation and its further metabolism in the rumen. This study also identified some of the transcriptionally active genera, such as Caldicellulosiruptor and Paludibacter, whose potential has been less-explored in rumen. Overall, the comparison of metagenomic shotgun and metatranscriptomic sequencing appeared to be a much richer source of information compared to conventional metagenomic analysis.


Asunto(s)
Alimentación Animal/análisis , Bacterias/clasificación , Dieta , Rumen/microbiología , Animales , Bacterias/genética , Bovinos , Metagenoma/genética , Metagenómica/métodos , Microbiota/genética
10.
Sci Rep ; 7(1): 7804, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798374

RESUMEN

Breastfeeding undoubtedly provides important benefits to the mother-infant dyad and should be encouraged. Mastitis, one of the common but major cause of premature weaning among lactating women, is an inflammation of connective tissue within the mammary gland. This study reports the influence of mastitis on human milk microbiota by utilizing 16 S rRNA gene sequencing approach. We sampled and sequenced microbiome from 50 human milk samples, including 16 subacute mastitis (SAM), 16 acute mastitis (AM) and 18 healthy-controls. Compared to controls, SAM and AM microbiota were quite distinct and drastically reduced. Genera including, Aeromonas, Staphylococcus, Ralstonia, Klebsiella, Serratia, Enterococcus and Pseudomonas were significantly enriched in SAM and AM samples, while Acinetobacter, Ruminococcus, Clostridium, Faecalibacterium and Eubacterium were consistently depleted. Further analysis of our samples revealed positive aerotolerant odds ratio, indicating dramatic depletion of obligate anaerobes and enrichment of aerotolerant bacteria during the course of mastitis. In addition, predicted functional metagenomics identified several gene pathways related to bacterial proliferation and colonization (e.g. two-component system, bacterial secretion system and motility proteins) in SAM and AM samples. In conclusion, our study confirmed previous hypothesis that mastitis women have lower microbial diversity, increased abundance of opportunistic pathogens and depletion of commensal obligate anaerobes.


Asunto(s)
Bacterias/clasificación , Mastitis/microbiología , Metagenómica/métodos , Leche Humana/microbiología , Análisis de Secuencia de ADN/métodos , Bacterias/genética , Estudios de Casos y Controles , ADN Bacteriano/genética , ADN Ribosómico/genética , Femenino , Redes Reguladoras de Genes , Humanos , Lactancia , Microbiota , Oportunidad Relativa , Filogenia , ARN Ribosómico 16S/genética
11.
J Breast Health ; 13(2): 88-93, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31244535

RESUMEN

OBJECTIVE: Human milk is universally accounted as the preeminent source of nutrition for infants. Surprisingly, no approved diagnostic tests are available for the diagnosis of physical condition of the breast. Somatic cell count (SCC) is a key tool commonly used in the dairy industry to provide evidence of udder health, which in turn determines the quality of bovine and cattle milk. Elevated levels of somatic cells in milk are observed during intra-mammary infectious state in bovine animals, which is due to active participation of the immune system. This constraint in humans can principally be used to study breast health. MATERIALS AND METHODS: In the present study, 176 breast milk samples in total were randomly collected from four different regions of Gujarat, India. All the samples were subjected to somatic cell count and total bacterial count tests. The effect of geographical region and maternal health was studied on the basis of milk SCC and total bacterial load. Statistical interpretation of the results was done using PRISM 6.07. RESULTS: Breast showing clinical symptoms of mastitis yielded a high SCC (>104 cells/microliter (µL)) and bacterial count (between 105 to 1011 Colony Forming Unit (CFU)/milliliter (mL)) in comparison to milk collected from healthy breast (<104 cells/µL and 103 to 104 CFU/mL). Statistical analysis reveals existence of significant correlation between the geographical region and SCC count of milk collected from healthy breast whereas no correlation was observed in infected breast milk. The study has also demonstrated that a lineer correlation exists between SCC and abundance of bacteria present in breast milk. CONCLUSION: The present study could be employed to predict lactating breast health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...