Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuron ; 102(5): 944-959.e3, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31030955

RESUMEN

Hyperexcitability of the anterior cingulate cortex (ACC) is thought to drive aversion associated with chronic neuropathic pain. Here, we studied the contribution of input from the mediodorsal thalamus (MD) to ACC, using sciatic nerve injury and chemotherapy-induced mouse models of neuropathic pain. Activating MD inputs elicited pain-related aversion in both models. Unexpectedly, excitatory responses of layer V ACC neurons to MD inputs were significantly weaker in pain models compared to controls. This caused the ratio between excitation and feedforward inhibition elicited by MD input to shift toward inhibition, specifically for subcortically projecting (SC) layer V neurons. Furthermore, direct inhibition of SC neurons reproduced the pain-related aversion elicited by activating MD inputs. Finally, both the ability to elicit pain-related aversion and the decrease in excitation were specific to MD inputs; activating basolateral amygdala inputs produced opposite effects. Thus, chronic pain-related aversion may reflect activity changes in specific pathways, rather than generalized ACC hyperactivity.


Asunto(s)
Reacción de Prevención/fisiología , Complejo Nuclear Basolateral/fisiopatología , Dolor Crónico/fisiopatología , Giro del Cíngulo/fisiopatología , Núcleo Talámico Mediodorsal/fisiopatología , Neuralgia/fisiopatología , Animales , Antineoplásicos Fitogénicos/toxicidad , Dolor Crónico/inducido químicamente , Dolor Crónico/etiología , Potenciales Postsinápticos Excitadores , Masculino , Ratones , Vías Nerviosas/fisiopatología , Neuralgia/inducido químicamente , Neuralgia/etiología , Paclitaxel/toxicidad , Técnicas de Placa-Clamp , Nervio Ciático/lesiones
2.
J Neurosci ; 37(35): 8315-8329, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28739583

RESUMEN

Dopamine neurons in the ventral tegmental area (VTA) encode reward prediction errors and can drive reinforcement learning through their projections to striatum, but much less is known about their projections to prefrontal cortex (PFC). Here, we studied these projections and observed phasic VTA-PFC fiber photometry signals after the delivery of rewards. Next, we studied how optogenetic stimulation of these projections affects behavior using conditioned place preference and a task in which mice learn associations between cues and food rewards and then use those associations to make choices. Neither phasic nor tonic stimulation of dopaminergic VTA-PFC projections elicited place preference. Furthermore, substituting phasic VTA-PFC stimulation for food rewards was not sufficient to reinforce new cue-reward associations nor maintain previously learned ones. However, the same patterns of stimulation that failed to reinforce place preference or cue-reward associations were able to modify behavior in other ways. First, continuous tonic stimulation maintained previously learned cue-reward associations even after they ceased being valid. Second, delivering phasic stimulation either continuously or after choices not previously associated with reward induced mice to make choices that deviated from previously learned associations. In summary, despite the fact that dopaminergic VTA-PFC projections exhibit phasic increases in activity that are time locked to the delivery of rewards, phasic activation of these projections does not necessarily reinforce specific actions. Rather, dopaminergic VTA-PFC activity can control whether mice maintain or deviate from previously learned cue-reward associations.SIGNIFICANCE STATEMENT Dopaminergic inputs from ventral tegmental area (VTA) to striatum encode reward prediction errors and reinforce specific actions; however, it is currently unknown whether dopaminergic inputs to prefrontal cortex (PFC) play similar or distinct roles. Here, we used bulk Ca2+ imaging to show that unexpected rewards or reward-predicting cues elicit phasic increases in the activity of dopaminergic VTA-PFC fibers. However, in multiple behavioral paradigms, we failed to observe reinforcing effects after stimulation of these fibers. In these same experiments, we did find that tonic or phasic patterns of stimulation caused mice to maintain or deviate from previously learned cue-reward associations, respectively. Therefore, although they may exhibit similar patterns of activity, dopaminergic inputs to striatum and PFC can elicit divergent behavioral effects.


Asunto(s)
Aprendizaje por Asociación/fisiología , Conducta de Elección/fisiología , Neuronas Dopaminérgicas/fisiología , Estimulación Eléctrica , Aprendizaje/fisiología , Corteza Prefrontal/fisiología , Área Tegmental Ventral/fisiología , Animales , Conducta Animal/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Recompensa
3.
Neuron ; 85(6): 1332-43, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25754826

RESUMEN

Abnormalities in GABAergic interneurons, particularly fast-spiking interneurons (FSINs) that generate gamma (γ; ∼30-120 Hz) oscillations, are hypothesized to disrupt prefrontal cortex (PFC)-dependent cognition in schizophrenia. Although γ rhythms are abnormal in schizophrenia, it remains unclear whether they directly influence cognition. Mechanisms underlying schizophrenia's typical post-adolescent onset also remain elusive. We addressed these issues using mice heterozygous for Dlx5/6, which regulate GABAergic interneuron development. In Dlx5/6(+/-) mice, FSINs become abnormal following adolescence, coinciding with the onset of cognitive inflexibility and deficient task-evoked γ oscillations. Inhibiting PFC interneurons in control mice reproduced these deficits, whereas stimulating them at γ-frequencies restored cognitive flexibility in adult Dlx5/6(+/-) mice. These pro-cognitive effects were frequency specific and persistent. These findings elucidate a mechanism whereby abnormal FSIN development may contribute to the post-adolescent onset of schizophrenia endophenotypes. Furthermore, they demonstrate a causal, potentially therapeutic, role for PFC interneuron-driven γ oscillations in cognitive domains at the core of schizophrenia.


Asunto(s)
Cognición/fisiología , Ritmo Gamma/fisiología , Interneuronas/fisiología , Corteza Prefrontal/fisiopatología , Animales , Conducta Animal , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Parvalbúminas/metabolismo , Corteza Prefrontal/fisiología , Esquizofrenia/fisiopatología
4.
Neuron ; 81(1): 61-8, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24361076

RESUMEN

Layer 5 pyramidal neurons comprise at least two subtypes: thick-tufted, subcortically projecting type A neurons, with prominent h-current, and thin-tufted, callosally projecting type B neurons, which lack prominent h-current. Using optogenetic stimulation, we find that these subtypes receive distinct forms of input that could subserve divergent functions. Repeatedly stimulating callosal inputs evokes progressively smaller excitatory responses in type B but not type A neurons. Callosal inputs also elicit more spikes in type A neurons. Surprisingly, these effects arise via distinct mechanisms. Differences in the dynamics of excitatory responses seem to reflect differences in presynaptic input, whereas differences in spiking depend on postsynaptic mechanisms. We also find that fast-spiking parvalbumin interneurons, but not somatostatin interneurons, preferentially inhibit type A neurons, leading to greater feedforward inhibition in this subtype. These differences may enable type A neurons to detect salient inputs that are focused in space and time, while type B neurons integrate across these dimensions.


Asunto(s)
Calcio/metabolismo , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/citología , Células Piramidales/fisiología , Sinapsis/clasificación , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Channelrhodopsins , Dependovirus/fisiología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Masculino , Ratones , Red Nerviosa/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Transducción Genética
5.
J Neurosci ; 32(14): 4959-71, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22492051

RESUMEN

Dopamine D2 receptors (D2Rs) play a major role in the function of the prefrontal cortex (PFC), and may contribute to prefrontal dysfunction in conditions such as schizophrenia. Here we report that in mouse PFC, D2Rs are selectively expressed by a subtype of layer V pyramidal neurons that have thick apical tufts, prominent h-current, and subcortical projections. Within this subpopulation, the D2R agonist quinpirole elicits a novel afterdepolarization that generates voltage fluctuations and spiking for hundreds of milliseconds. Surprisingly, this afterdepolarization is masked in quiescent brain slices, but is readily unmasked by physiologic levels of synaptic input which activate NMDA receptors, possibly explaining why this phenomenon has not been reported previously. Notably, we could still elicit this afterdepolarization for some time after the cessation of synaptic stimulation. In addition to NMDA receptors, the quinpirole-induced afterdepolarization also depended on L-type Ca(2+) channels and was blocked by the selective L-type antagonist nimodipine. To confirm that D2Rs can elicit this afterdepolarization by enhancing Ca(2+) (and Ca(2+)-dependent) currents, we measured whole-cell Ca(2+) potentials that occur after blocking Na(+) and K(+) channels, and found quinpirole enhanced these potentials, while the selective D2R antagonist sulpiride had the opposite effect. Thus, D2Rs can elicit a Ca(2+)-channel-dependent afterdepolarization that powerfully modulates activity in specific prefrontal neurons. Through this mechanism, D2Rs might enhance outputs to subcortical structures, contribute to reward-related persistent firing, or increase the level of noise in prefrontal circuits.


Asunto(s)
Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Receptores de Dopamina D2/fisiología , Potenciales Sinápticos/fisiología , Animales , Polaridad Celular/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...