Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 118(12): 4815-4828, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34585737

RESUMEN

Monoclonal antibodies are the leading class of biopharmaceuticals in terms of numbers approved for therapeutic purposes. Antigen-binding fragments (Fab) are also used as biotherapeutics and used widely in research applications. The dominant expression systems for full-length antibodies are mammalian cell-based, whereas for Fab molecules the preference has been an expression in bacterial systems. However, advances in CHO and downstream technologies make mammalian systems an equally viable option for small- and large-scale Fab production. Using a panel of full-length IgG antibodies and their corresponding Fab pair with different antigen specificities, we investigated the impact of the IgG and Fab molecule format on production from Chinese hamster ovary (CHO) cells and assessed the cellular capability to process and produce these formats. The full-length antibody format resulted in the recovery of fewer mini-pools posttransfection when compared to the corresponding Fab fragment format that could be interpreted as indicative of a greater overall burden on cells. Antibody-producing cell pools that did recover were subsequently able to achieve higher volumetric protein yields (mg/L) and specific productivity than the corresponding Fab pools. Importantly, when the actual molecules produced per cell of a given format was considered (as opposed to mass), CHO cells produced a greater number of Fab molecules per cell than obtained with the corresponding IgG, suggesting that cells were more efficient at making the smaller Fab molecule. Analysis of cell pools showed that gene copy number was not correlated to the subsequent protein production. The amount of mRNA correlated with secreted Fab production but not IgG, whereby posttranscriptional processes act to limit antibody production. In summary, we provide the first comparative description of how full-length IgG and Fab antibody formats impact on the outcomes of a cell line construction process and identify potential limitations in their production that could be targeted for engineering increases in the efficiency in the manufacture of these recombinant antibody formats.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas , Inmunoglobulina G , Proteínas Recombinantes , Animales , Células CHO , Técnicas de Cultivo de Célula , Cromatografía Líquida de Alta Presión , Cricetinae , Cricetulus , Fragmentos Fab de Inmunoglobulinas/análisis , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Fragmentos Fab de Inmunoglobulinas/metabolismo , Inmunoglobulina G/análisis , Inmunoglobulina G/química , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina G/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
2.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31471304

RESUMEN

The potential utilization of extremophiles as a robust chassis for metabolic engineering applications has prompted interest in the use of Deinococcus radiodurans for bioremediation efforts, but current applications are limited by the lack of availability of genetic tools, such as promoters. In this study, we used a combined computational and experimental approach to identify and screen 30 predicted promoters for expression in D. radiodurans using a fluorescent reporter assay. The top eight candidates were further characterized, compared to currently available promoters, and optimized for engineering through minimization for use in D. radiodurans Of these top eight, two promoter regions, PDR_1261 and PrpmB, were stronger and more consistent than the most widely used promoter sequence in D. radiodurans, PgroES Furthermore, half of the top eight promoters could be minimized by at least 20% (to obtain final sequences that are approximately 24 to 177 bp), and several of the putative promoters either showed activity in Escherichia coli or were D. radiodurans specific, broadening the use of the promoters for various applications. Overall, this work introduces a suite of novel, well-characterized promoters for protein production and metabolic engineering in D. radioduransIMPORTANCE The tolerance of the extremophile, Deinococcus radiodurans, to numerous oxidative stresses makes it ideal for bioremediation applications, but many of the tools necessary for metabolic engineering are lacking in this organism compared to model bacteria. Although native and engineered promoters have been used to drive gene expression for protein production in D. radiodurans, very few have been well characterized. Informed by bioinformatics, this study expands the repertoire of well-characterized promoters for D. radiodurans via thorough characterization of eight putative promoters with various strengths. These results will help facilitate tunable gene expression, since these promoters demonstrate strong and consistent performance compared to the current standard, PgroES This study also provides a methodology for high-throughput promoter identification and characterization using fluorescence in D. radiodurans The promoters identified in this study will facilitate metabolic engineering of D. radiodurans and enable its use in biotechnological applications ranging from bioremediation to synthesis of commodity chemicals.


Asunto(s)
Deinococcus/genética , Deinococcus/fisiología , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas Bacterianas/genética , Biodegradación Ambiental , Biotecnología , Biología Computacional , Escherichia coli/genética , Extremófilos/genética , Extremófilos/fisiología , Ingeniería Metabólica , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...