Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 348: 123830, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38518972

RESUMEN

Atmospheric pollution is a serious problem in many countries, including India, and it is generally considered as an urban issue. To fill the knowledge gap about particulate pollution and its adverse health effects in rural India for well-informed region-specific policy interventions, we present new insights on the rural pollution of India in terms of PM2.5. Here, we analyse PM2.5 pollution and its associated health burden in rural India using satellite and reanalyses data for the period 2000-2019. We observe a gradual and consistent rise of atmospheric pollution in rural areas of India. The highest PM2.5 levels are observed in Indo-Gangetic Plain (IGP) during winter and post-monsoon seasons (107.0 ± 17.0 and 91.0 ± 21.7 µg/m3, respectively). A dipole reversal in seasonal trends between winter and post-monsoon seasons is found for black carbon (BC) and organic carbon (OC) in the rural IGP. The rural North West India (NWI) experiences elevated PM2.5 concentrations due to dust storms, while the rural hilly region (HR) in the Himalaya remains the least polluted region in India. The highest PM2.5 associated cardiopulmonary mortality in 2019 is observed in the rural IGP districts (1000-5100), whereas the highest mortality due to lung cancer at district level accounts for 10-60 deaths. The highest mortality attributed to PM2.5 is observed in districts of Uttar Pradesh, Bihar, West Bengal, Punjab, Haryana and Rajasthan. The priority-wise segregation of states as per World Health Organisation (WHO) Interim targets (ITs), as assessed in this study, might be helpful in implementation and development of policies in phases. We, therefore, present the first detailed study on the PM2.5 pollution in rural India, and provide valuable insights on its distribution, variability, sources and associated mortality, and emphasize the need for addressing this issue to protect public health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , India/epidemiología , Monitoreo del Ambiente , Aerosoles y Gotitas Respiratorias , Estaciones del Año , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Carbono/análisis
2.
Small ; 20(26): e2310120, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38279619

RESUMEN

Supercapacitors (SCs) with outstanding versatility have a lot of potential applications in next-generation electronics. However, their practical uses are limited by their short working potential window and ultralow-specific capacity. Herein, the facile one-step in-situ hydrothermal synthesis is employed for the construction of a NiMo3S4/BP (black phosphorous) hybrid with a 3D hierarchical structure. After optimization, the NiMo3S4/BP hybrid displays a high specific capacitance of 830 F/g at 1 A/g compared to the pristine NiMo3S4 electrode. The fabricated NiMo3S4/BP//NiCo2S4/Ti3C2Tx asymmetric supercapacitor exhibits a better specific capacitance of 120 F/g at 0.5 A/g, which also demonstrates a high energy density of 54 Wh/kg at 1148.53 W/kg and good cycle stability with capacity retention of 86% and 97% of Coulombic efficiency after 6000 cycles. Further from the DFT simulations, the hybrid NiMo3S4/BP structure shows higher conductivity and quantum capacitance, which demonstrate greater charge storage capability, due to enhanced electronic states near the Fermi level. The lower diffusion energy barrier for the electrolyte K+ ions in the hybrid structure is facilitated by improved charge transfer performance for the hybrid NiMo3S4/BP. This work highlights the potential significance of hybrid nanoarchitectonics and compositional tunability as an emerging method for improving the charge storage capabilities of active electrodes.

3.
Environ Sci Process Impacts ; 24(12): 2437-2449, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36413251

RESUMEN

India is a country with more than 67% of its population (947 million) residing in rural areas and 33% in urban areas (472 million) as of 2020. Therefore, health of the people living in rural India is very important for its future development plans, economy and growth. Here, we analyse the rural air quality using satellite measurements of NO2 in India, as the sources of NO2 are well connected to the industrial and economic uplift of a nation. Our analyses for the rural regions show distinct seasonal changes with the highest value (2.0 × 1015 molecules per cm2) in winter and the lowest in monsoon (1.5 × 1015 molecules per cm2) seasons. About 41% of the total NO2 pollution in India is from its rural sources, but 59% of the urban sources were focused in the past studies. In addition, around 45% of the rural NO2 pollution is due to road transport, whereas more than 90% of it in urban India comes from the power sector. Our assessment shows that the NO2 exposure in rural regions is as serious as that in urban areas, indicating the need for more effective reduction of population exposure and protection of public health. Henceforth, this study reveals that rural India is gradually getting polluted from its nearby regions as well as from the new sources within. This is a big concern for the public health of the large rural population of India.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Dióxido de Nitrógeno/análisis , Población Rural , Contaminación del Aire/análisis , Estaciones del Año , India , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente
4.
Environ Sci Pollut Res Int ; 29(52): 78637-78649, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35696063

RESUMEN

India relies heavily on coal-based thermal power plants to meet its energy demands. Sulphur dioxide (SO2) emitted from these plants and industries is a major air pollutant. Analysis of spatial and temporal changes in SO2 using accurate and continuous observations is required to formulate mitigation strategies to curb the increasing air pollution in India. Here, we present the temporal changes in SO2 concentrations over India in the past four decades (1980-2020). Our analysis shows that the Central and East India, and Indo-Gangetic Plain (IGP) are the hotspots of SO2, as these regions house a cluster of thermal power plants, petroleum refineries, steel manufacturing units, and cement Industries. Thermal power plants (51%), and manufacturing and construction industries (29%) are the main sources of anthropogenic SO2 in India. Its concentration over India is higher in winter (December-February) and lower in pre-monsoon (March-May) seasons. The temporal analyses reveal that SO2 concentrations in India increased between 1980 and 2010 due to high coal burning and lack of novel technology to contain the emissions during the period. However, SO2 shows a decreasing trend in recent decade (2010-2020) because of the environmental regulations and implementation of effective control technologies such as the flue gas desulphurisation (FGD) and scrubber. Since 2010, India's renewable energy production has also been increased substantially when India adopted a sustainable development policy. Therefore, the shift in energy production from conventional coal to renewable sources, solid environmental regulation, better inventory, and effective technology would help to curb SO2 pollution in India. Both economic growth and air pollution control can be performed hand-in-hand by adopting new technology to reduce SO2 and GHG emissions.


Asunto(s)
Contaminantes Atmosféricos , Petróleo , Dióxido de Azufre/análisis , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Petróleo/análisis , Tecnología , Acero/análisis
5.
RSC Adv ; 12(17): 10788-10799, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35425026

RESUMEN

Spinel metal sulfides have been investigated for a wide range of applications mostly in electrochemical energy storage owing to their better electronic conductivity and high reversible redox activity. Herein, we report a facile fabrication approach for the binder-free supercapacitor electrodes based on spinel NiCo2S4 (NCS) on various substrates such as Cu-foil (CF), Ni-foam (NF), and vertical graphene nanosheets grown on carbon tape (VG) via a single step-controlled electrodeposition technique. The obtained electrodeposited NiCo2S4 grown on Cu-foil (denoted as CF-NCS) in symmetric assembly shows a high specific capacitance of 167.28 F g-1 compared to NCS grown on Ni-foam and VG substrates, whereas, symmetric NiCo2S4 grown on a VG substrate device exhibits better cycling performance (81% for 3000 cycles) compared to CF-NCS and NF-NCS. Furthermore, an asymmetric supercapacitor was assembled in combination with MXene (Ti3C2T x ) as a negative electrode (denoted as TCX). As a result, the CF-NCS//TCX device exhibits a high areal capacitance of 48.6 mF cm-2 at 2 mA cm-2 of current density. We also report good specific capacitance of 54.57 F g-1 at 2 A g-1; in addition, the CF-NCS//TCX assembly delivers maximum areal and gravimetric energy density of 14.86 mWh cm-2 and 14.86 Wh kg-1 respectively. In contrast, the VG-NCS//TCX device showed improved cycling stability with 85% of capacitance retention over 5000 cycles owing to its highly porous structure and multiple conductive networks in the VG substrate and provides structural stability to NCS with fast ion diffusion. This experiment favors 2D MXene as a capacitive electrode that provides a replacement for carbon-based electrodes in asymmetric assembly with superior electrochemical performance. Hence, the hierarchical NCS structure grown on the various substrates in combination with MXene serve as a promising material for energy storage application.

6.
Opt Lett ; 46(23): 5930-5933, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851926

RESUMEN

In this Letter, we demonstrate for the first time, to the best of our knowledge, NiCo2O4 (NCO) as a novel nonlinear optical material with straightforward potential applications in optical limiting. For the 532 nm nanosecond laser, excited state absorption (ESA) and free-carrier absorption give rise to large ESA coefficient (ßESA) and positive nonlinear n2. On the other hand, when excited with the 800 nm femtosecond laser, two-photon absorption (TPA) takes place, and bound carriers induce strong negative n2. The values of ß and n2 obtained for NCO are found to be higher compared to other conventional transition metal oxides and, therefore, are promising for optics and other photonics applications.

7.
J Chem Phys ; 152(6): 064706, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32061223

RESUMEN

In this work, we demonstrated the supercapacitor performance of pristine and composites of spinel NiCo2O4 with a multi-walled carbon nanotube (MWCNT) assembled in a two-electrode cell configuration. Spinel NiCo2O4 and NiCo2O4@MWCNT composites were synthesized via a facile hydrothermal method. The supercapacitive performance of as-synthesized NiCo2O4 and NiCo2O4@MWCNT fabricated on Ni-foam was studied in a 0.5M K2SO4 electrolyte using electrochemical measurement techniques. The symmetric cell configuration of NiCo2O4@MWCNT delivers high specific capacitance (374 F/g at 2 A/g) with high energy density and power density (95 Wh/kg and 3 964 W/kg, respectively) compared to that of pristine NiCo2O4 electrodes (137 F/g at 0.6 A/g). Furthermore, the energy storage performance of the asymmetric cells of NiCo2O4//MWCNT and NiCo2O4@MWCNT//MWCNT was studied to enhance cycling stability (retention of 74.85% over 3000 cycles). We have also theoretically studied the supercapacitance performance of pristine NiCo2O4 and NiCo2O4@SWCNT hybrid structures through its structural and electronic properties using density functional theory predictions. The higher specific capacitance of the NiCo2O4@SWCNT hybrid system with high power density and energy density is supported by the enhanced density of states near the Fermi level and increased quantum capacitance of the hybrid structure. We have theoretically computed the diffusion energy barrier of K+ ions of the K2SO4 electrolyte in the NiCo2O4 layer and compared it with the diffusion barrier for Na+ ions. The lesser diffusion energy barrier for K+ ions in the NiCo2O4 layer contributes toward higher energy storage capacity. Thus, owing to superior electrochemical performance of NiCo2O4 composites with MWCNTs, it can serve as a high-performance electrode material for supercapacitor applications.

8.
RSC Adv ; 9(56): 32573-32580, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35529758

RESUMEN

Pristine and Au-decorated Bi2O3/Bi2WO6 nanocomposites were synthesized via a facile hydrothermal method. Characterization techniques such as XRD, FESEM, HRTEM and XPS were used to explore the structural, morphological and electronic properties. Furthermore, electrochemical characterizations including cyclic voltammetry (CV), the galvanostatic charge-discharge (GCD) method, and electrochemical impedance spectroscopy (EIS) were performed to investigate the supercapacitance behaviour of the synthesized materials. Interestingly, the Au-decorated Bi2O3/Bi2WO6 nanocomposite showed a higher capacitance of 495.05 F g-1 (1 M aqueous KOH electrolyte) with improved cycling stability (99.26%) over 2000 cycles, measured at a current density of 1 A g-1, when compared to the pristine Bi2O3/Bi2WO6 composite (capacitance of 148.81 F g-1 and good cycling stability (95.99%) over 2000 cycles at a current density of 1 A g-1). The results clearly reveal that the decoration of the Bi2O3/Bi2WO6 composite with Au nanoparticles enhances its supercapacitance behaviour, which can be attributed to an increase in electrical conductivity, good electrical contact between the electrode and electrolyte, and an increase in effective area. The Au-decorated Bi2O3/Bi2WO6 nanocomposite can be considered as an electrode material for supercapacitor application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...