Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Matrix Biol Plus ; 23: 100153, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38882396

RESUMEN

Fish oils rank among the world's most popular nutritional supplements and are purported to have numerous health benefits. Previous work suggested that fish oils increase collagen production; however, the effect of fish oils on musculoskeletal health is poorly understood. Further, the divergent effects of omega-3 (Ω3FA) and saturated fatty acids (SFA) remains poorly understood. We tested the effects of Ω3FA and SFAs on in vitro-engineered human ligament (EHL) function. EHLs were treated with bovine serum albumin (BSA)-conjugated eicosapentaenoic acid (EPA, 20:5(n-3)), palmitic acid (PA, 16:0), or a BSA control for 6 days. EPA did not significantly alter, whereas PA significantly decreased EHL function and collagen content. To determine whether this was an in vitro artifact, mice were fed a control or high-lard diet for 14 weeks and musculoskeletal mass, insulin sensitivity, and the collagen content, and mechanics of tendon and bone were determined. Body weight was 40 % higher on a HFD, but muscle, tendon, and bone mass did not keep up with body weight resulting in relative losses in muscle mass, tendon, and bone collagen, as well as mechanical properties. Importantly, we show that PA acutely decreases collagen synthesis in vitro to a similar extent as the decrease in collagen content with chronic treatment. These data suggest that Ω3FAs have a limited effect on EHLs, whereas SFA exert a negative effect on collagen synthesis resulting in smaller and weaker musculoskeletal tissues both in vitro and in vivo.

2.
Exerc Sport Sci Rev ; 51(1): 27-33, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36123723

RESUMEN

As humans age, we lose skeletal muscle mass, even in the absence of disease (sarcopenia), increasing the risk of death. Low mitochondrial mass and activity contributes to sarcopenia. It is our hypothesis that a ketogenic diet improves skeletal muscle mitochondrial mass and function when they have declined because of aging or disease, but not in athletes where mitochondrial quality is high.


Asunto(s)
Dieta Cetogénica , Sarcopenia , Humanos , Músculo Esquelético/metabolismo , Envejecimiento , Mitocondrias
3.
Aging Cell ; 21(10): e13706, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36148631

RESUMEN

The effect of a ketogenic diet (KD) on middle aged female mice is poorly understood as most of this work have been conducted in young female mice or diseased models. We have previously shown that an isocaloric KD started at middle age in male mice results in enhanced mitochondrial mass and function after 2 months on diet and improved cognitive behavior after being on diet for 14 months when compared with their control diet (CD) fed counterparts. Here, we aimed to investigate the effect of an isocaloric 2-month KD or CD on healthy 14-month-old female mice. At 16 months of age cognitive behavior tests were performed and then serum, skeletal muscle, cortex, and hippocampal tissues were collected for biochemical analysis. Two months on a KD resulted in enhanced cognitive behavior associated with anxiety, memory, and willingness to explore. The improved neurocognitive function was associated with increased PGC1α protein in the gastrocnemius (GTN) muscle and nuclear fraction. The KD resulted in a tissue specific increase in mitochondrial mass and kynurenine aminotransferase (KAT) levels in the GTN and soleus muscles, with a corresponding decrease in kynurenine and increase in kynurenic acid levels in serum. With KAT proteins being responsible for converting kynurenine into kynurenic acid, which is unable to cross the blood brain barrier and be turned into quinolinic acid-a potent neurotoxin, this study provides a potential mechanism of crosstalk between muscle and brain in mice on a KD that may contribute to improved cognitive function in middle-aged female mice.


Asunto(s)
Dieta Cetogénica , Animales , Cognición , Femenino , Ácido Quinurénico/metabolismo , Ácido Quinurénico/farmacología , Quinurenina/metabolismo , Quinurenina/farmacología , Masculino , Ratones , Músculo Esquelético/metabolismo , Neurotoxinas , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ácido Quinolínico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...