Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomed Chromatogr ; 37(9): e5695, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37406633

RESUMEN

Fipronil is a broad-spectrum phenyl pyrazole insecticide that has a high degree of environmental toxicity. Commonly available chilies in the market are treated with fipronil insecticides. Demand for insecticide-free chili has thus been increasing globally. This needs various sustainable and economical methods to remove insecticides from chilies. The present study examined the effectiveness of several cleaning methods to remove pesticide residues in chili fruits. A supervised field trial was conducted in randomized block design at Rajasthan Agricultural Research Institute, Durgapura, Jaipur, India. Chili samples were subjected to seven different household methods. The samples were extracted using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. The residues were analyzed using a gas chromatograph-electron capture detector and confirmed by GC-MS. Of the seven methods, the acetic acid treatment removes the maximum residue effect of fipronil and its metabolites (desulfinyl [MB046513]), sulfide (MB045950), and sulfone (MB046136) on chili fruits. By contrast, the tap water treatment was the least effective. The Food Safety and Standards Authority of India (FSSAI) have set the maximum residue limit value of 0.001 mg kg-1 for fipronil on green chili.


Asunto(s)
Capsicum , Insecticidas , Residuos de Plaguicidas , Capsicum/química , Frutas/química , Descontaminación , India , Insecticidas/análisis , Pirazoles/química , Residuos de Plaguicidas/análisis
2.
Environ Geochem Health ; 45(12): 9293-9302, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36645625

RESUMEN

In recent decades, fate studies of pesticides have been a topic of interest worldwide due to human health concerns tomato, contain abundant nutritional phytochemicals and lycopene which is known for antioxidant. Tomato is susceptible to many pest, so to overcome from these pests many insecticides are used, leaving residual effects on the crop. So to find out the persistence, the present study was carried out to investigate the residual levels and dissipation behaviour of novaluron 9.45% + lambda-cyhalothrin 1.9% ZC in tomato crop during Rabi session of 2017-18 in randomized block design. The first spray of insecticide was done at fruit formation stage and second spray at 10-day interval at recommended dose @43.31 g a.i. ha-1 and double of recommended dose @86.62 g a.i. ha-1. The residue of novaluron determined by HPLC (high-performance liquid chromatography) on 0 day (two hours after spraying) was 0.154 ppm at lower dose and 0.234 ppm at higher dose. The residue of lambda-cyhalothrin determined by GC ECD (gas chromatography electron capture detector) at 0 day (two hours after spraying) was 0.451 ppm at lower dose and 0.849 ppm at higher dose. The deposition of novaluron 9.45% + lambda-cyhalothrin 1.9% ZC was gradually decreased with increasing days after spraying (DAS). The mean initial deposition of the pesticide novaluron and lambda-cyhalothrin was recorded as 0.154 mg/kg, 0.451 mg/kg, respectively, at the recommended dose @43.31 g a.i. ha-1 while at double of recommended dose @86.62 g a.i. ha-1 novaluron and lambda-cyhalothrin, the mean initial deposition of 0.234 mg/kg and 0.849 mg/kg was recorded, respectively. The residue of the novaluron and lambda-cyhalothrin was at BDL (below determination level) (0.01 and 0.05 ppm) on 5th and 7th day, respectively, at lower dose (x), whereas at higher dose (2x) it was below determination level on 7th and 10th day, respectively. In soil samples, the residue levels were at below the determination level (0.01 mg/kg) for novaluron and (0.05 mg/kg) for lambda-cyhalothrin at both doses. The half-life DT50 of novaluron and lambda-cyhalothrin in the tomato fruit was found to be 2 days at recommended dose (X) @43.31 g a.i. ha-1 for both the pesticide and at double of the recommended dose @86.62 g a.i. ha-1 it was 3 and 2 days, respectively.


Asunto(s)
Insecticidas , Residuos de Plaguicidas , Solanum lycopersicum , Humanos , Insecticidas/análisis , Residuos de Plaguicidas/análisis
3.
Biomed Chromatogr ; 37(4): e5577, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36573415

RESUMEN

A supervised field trial was designed in Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, to assess the dissipation and persistence of spiromesifen in chili fruits. Spiromesifen (22.9% suspension concentrate) was sprayed two times at an interval of 10 days at the recommended dose (96 g. a.i. ha-1 ) and double the recommended dose (192 g. a.i. ha-1 ) with four replications. Sampling was done according to the planned interval of days after the second spray. Extraction and cleanup were performed using the modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method and the spiromesifen residue was analyzed by GC-electron capture detector and confirmation performed using GC-MS. The average initial deposit of spiromesifen was 1.207 mg kg-1 and 1.948 mg kg-1 at the recommended and double the recommended dose, respectively. The half-life values of spiromesifen ranged between 2.7 and 3.2 days at the recommended and double the recommended dose. The safe waiting period was calculated for the respective doses and it was concluded that an average of 7 days is safe for picking. The FSSAI (Food Safety and Standards Authority of India) have set the maximum residue limit of 0.1 mg kg-1 for spiromesifen in green chili. The theoretical maximum residue contribution value of spiromesifen was lower than the maximum permissible intake at both the applications on the 0th day. Hence, there will be no adverse effects on human health after consumption of green chilies.


Asunto(s)
Insecticidas , Residuos de Plaguicidas , Humanos , Frutas/química , Insecticidas/análisis , Semivida , Electrones , Residuos de Plaguicidas/análisis , Monitoreo del Ambiente/métodos , India , Cinética , Cromatografía de Gases , Medición de Riesgo
4.
Environ Sci Pollut Res Int ; 28(24): 31909-31919, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33616825

RESUMEN

Multi-location supervised field trials in India were conducted with a combination pesticide formulation (iprovalicarb 5.5% + propineb 61.25%, 66.75% WP) in tomato to study dissipation behavior at single (iprovalicarb 137.5 g a.i. ha-1 + propineb 1531.25 g a.i. ha-1) and double (iprovalicarb 275 g a.i. ha-1 + propineb 3062.5 g a.i. ha-1) dose. The samples were processed using a modified QuEChERS method for iprovalicarb and acid hydrolysis followed by carbon disulfide estimation for propineb and confirmation of their respective residues by LC-MS/MS and GC-MS. Both the fungicides in tomato fruits obey first-order kinetics irrespective of location and doses. Half-life (t1/2) values at all the four locations ranged from 1.08 to 4.67 days for iprovalicarb and 3.36 to 11.41 days for propineb in tomato. The Food Safety and Standards Authority of India (FSSAI) has set MRL of 1 mg kg-1 for propineb, but no MRL is yet fixed for iprovalicarb. Using OECD MRL calculator, the calculated MRL for iprovalicarb and propineb was found to be 2 and 4 mg kg-1, respectively. The hazard quotient (HQ) < 1, theoretical maximum daily intake (TMDI) < acceptable daily intake (ADI), TMDI < maximum permissible intake (MPI), percent acute hazard index (% aHI) ≤ 1, and percent chronic hazard index (% cHI) < 1 for both the fungicides indicated that the combination formulation will not pose any dietary risk and thus considered safe for human health.


Asunto(s)
Fungicidas Industriales , Residuos de Plaguicidas , Solanum lycopersicum , Carbamatos , Cromatografía Liquida , Fungicidas Industriales/análisis , Semivida , Humanos , India , Cinética , Residuos de Plaguicidas/análisis , Medición de Riesgo , Espectrometría de Masas en Tándem , Valina/análogos & derivados , Zineb/análogos & derivados
5.
Ecotoxicol Environ Saf ; 208: 111494, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33120258

RESUMEN

Cabbage, one of the most popular vegetables in the world is infested by several insect-pests and diseases. Novaluron, a chitin synthesis inhibitor and lambda-cyhalothrin, a synthetic pyrethroid group insecticide are used to manage insect-pests on cabbage. The dissipation kinetics and risk assessment of combination formulation (novaluron 9.45% + lambda-cyhalothrin 1.9%) with different modes of action has not yet been investigated in cabbage. Multi-location supervised field trials were therefore, conducted in different agro-climatic regions of India for safety evaluation of the combination product. The co-formulation at the recommended (novaluron 750 g a.i. ha-1 + lambda-cyhalothrin 750 g a.i. ha-1) and double the recommended (novaluron 1500 g a.i. ha-1 + lambda-cyhalothrin 1500 g a.i. ha-1) dose was sprayed on the cabbage crop. The samples were extracted and cleaned up using a modified QuEChERS method, and the residues analyzed by GC-ECD and GC-MS. The half-life (t1/2) varied between 1.77 and 2.51 and 2.00-3.38 days for novaluron and 1.36-2.24 and 1.69-3.82 days for lambda-cyhalothrin in cabbage at respective doses. The Food Safety and Standards Authority of India (FSSAI) has set the MRL of 0.7 mg kg-1 for novaluron at PHI of 5 days, and no MRL is set for lambda-cyhalothrin in cabbage. On the basis of OECD MRL calculator, the MRLs of 0.6 and 1.5 mg kg-1 for novaluron and lambda-cyhalothrin, respectively were calculated at the respective doses at PHI of 3 days. Hazard quotient (HQ) <1, theoretical maximum daily intake (TMDI) < acceptable daily intake (ADI) and < maximum permissible intake (MPI), percent acute hazard index (% aHI) <1, and percent chronic hazard index (% cHI) <1 for both novaluron and lambda-cyhalothrin suggested that the combination formulation is safe and will not pose any dietary risk to the consumers. The study will be helpful to conduct risk assessment of other pesticides/combination pesticides on food crops on which their MRLs have not yet been fixed.


Asunto(s)
Brassica , Exposición a Riesgos Ambientales , Insecticidas/análisis , Nitrilos/análisis , Residuos de Plaguicidas/análisis , Compuestos de Fenilurea/análisis , Piretrinas/análisis , Monitoreo del Ambiente , Humanos , Cinética , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA