Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 13(4)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36278640

RESUMEN

Infusing pancreatic islets into the portal vein currently represents the preferred approach for islet transplantation, despite considerable loss of islet mass almost immediately after implantation. Therefore, approaches that obviate direct intravascular placement are urgently needed. A promising candidate for extrahepatic placement is the omentum. We aimed to develop an extracellular matrix skeleton from the native pancreas that could provide a microenvironment for islet survival in an omental flap. To that end, we compared different decellularization approaches, including perfusion through the pancreatic duct, gastric artery, portal vein, and a novel method through the splenic vein. Decellularized skeletons were compared for size, residual DNA content, protein composition, histology, electron microscopy, and MR imaging after repopulation with isolated islets. Compared to the other approaches, pancreatic perfusion via the splenic vein provided smaller extracellular matrix skeletons, which facilitated transplantation into the omentum, without compromising other requirements, such as the complete depletion of cellular components and the preservation of pancreatic extracellular proteins. Repeated MR imaging of iron-oxide-labeled pancreatic islets showed that islets maintained their position in vivo for 49 days. Advanced environmental scanning electron microscopy demonstrated that islets remained integrated with the pancreatic skeleton. This novel approach represents a proof-of-concept for long-term transplantation experiments.

2.
Transplantation ; 106(3): 531-542, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34086655

RESUMEN

BACKGROUND: Transplantation of pancreatic islets into subcutaneous cavities in diabetic rats may be as or even more effective than transplantation into the portal vein. Identifying the optimal timing of the individual steps in this procedure is critical. METHODS: Macroporous scaffolds were placed in the subcutaneous tissue of diabetic male Lewis rats for 7 or 28 d and the healing of the tissue inside the scaffolds was monitored. A marginal syngeneic graft comprising 4 islets/g of recipient body weight was transplanted at the best timing focusing mainly on vascularization. Recipients were monitored for blood glucose levels and tolerance tests. Histological examination was performed in all implanted scaffolds. The presence of individual endocrine cells was analyzed in detail. RESULTS: Blood glucose levels remained within the physiological range in all recipients until the end of experiment as well as body weight increase. Coefficients of glucose assimilation were normal or slightly reduced with no statistically significant differences between the groups 40 and 80 d after transplantation. Histological analysis revealed round viable islets in the liver similar to those in pancreas, but alpha cells practically disappeared, whereas islets in the scaffolds formed clusters of cells surrounded by rich vascular network and the alpha cells remained partially preserved. CONCLUSIONS: Subcutaneous transplantation of pancreatic islets is considerably less invasive but comparably efficient as commonly used islet transplantation into the portal vein. In consideration of alpha and beta cell ratio, the artificial subcutaneous cavities represent a promising site for future islet transplantation therapy.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Glucemia , Diabetes Mellitus Experimental/cirugía , Islotes Pancreáticos/irrigación sanguínea , Islotes Pancreáticos/cirugía , Trasplante de Islotes Pancreáticos/métodos , Masculino , Ratas , Ratas Endogámicas Lew , Tejido Subcutáneo
3.
Mol Imaging Biol ; 23(5): 639-649, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33599904

RESUMEN

PURPOSE: The liver is the most widely used site for pancreatic islet transplantation. However, several site-specific limitations impair functional success, with instant blood-mediated inflammatory reaction being the most important. The aim of this study was to develop a preclinical model for placement of the islet graft into a highly vascularized omental flap using a fibrin gel. For this purpose, we tested islet viability by bioluminescence imaging (BLI). PROCEDURES: Pancreatic islets were isolated from luciferase-positive and luciferase-negative rats, mixed at a 1:1 ratio, placed into a plasma-thrombin bioscaffold, and transplanted in standard (10 pancreatic islets/g wt; n = 10) and marginal (4 pancreatic islets/g wt; n = 7) numbers into the omentums of syngeneic diabetic animals. For the control, 4 pancreatic islets/g were transplanted into the liver using the standard procedure (n = 7). Graft viability was tested by bioluminescence at days 14, 30, 60, and 90 post transplant. Glucose levels, intravenous glucose tolerance, and serum C-peptide were assessed regularly. RESULTS: Nonfasting glucose levels < 10 mmol/l were restored in all animals. While islet viability in the omentum was clearly detected by stable luminescence signals throughout the whole study period, no signals were detected from islets transplanted into the liver. The bioluminescence signals were highly correlated with stimulated C-peptide levels detected at 80 days post transplant. Glucose tolerance did not differ among the 3 groups. CONCLUSIONS: We successfully tested a preclinical model of islet transplantation into the greater omentum using a biocompatible scaffold made from autologous plasma and human thrombin. Both standard and marginal pancreatic islet numbers in a gel-form bioscaffold placed in the omentum restored glucose homeostasis in recipients with diabetes. Bioluminescence was shown promising as a direct proof of islet viability.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/diagnóstico por imagen , Mediciones Luminiscentes/métodos , Imagen Molecular/métodos , Epiplón/diagnóstico por imagen , Animales , Supervivencia Celular/fisiología , Femenino , Supervivencia de Injerto/fisiología , Masculino , Ratas
4.
Biomater Sci ; 8(2): 746, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31829313

RESUMEN

Correction for 'Bioengineering a pre-vascularized pouch for subsequent islet transplantation using VEGF-loaded polylactide capsules' by Naresh Kasoju et al., Biomater. Sci., 2020, DOI: 10.1039/c9bm01280j.

5.
Biomater Sci ; 8(2): 631-647, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31729495

RESUMEN

The effectiveness of cell transplantation can be improved by optimization of the transplantation site. For some types of cells that form highly oxygen-demanding tissue, e.g., pancreatic islets, a successful engraftment depends on immediate and sufficient blood supply. This critical point can be avoided when cells are transplanted into a bioengineered pre-vascularized cavity which can be formed using a polymer scaffold. In our study, we tested surface-modified poly(lactide-co-caprolactone) (PLCL) capsular scaffolds containing the pro-angiogenic factor VEGF. After each modification step (i.e., amination and heparinization), the surface properties and morphology of scaffolds were characterized by ATR-FTIR and XPS spectroscopy, and by SEM and AFM. All modifications preserved the gross capsule morphology and maintained the open pore structure. Optimized aminolysis conditions decreased the Mw of PLCL only up to 10% while generating a sufficient number of NH2 groups required for the covalent immobilization of heparin. The heparin layer served as a VEGF reservoir with an in vitro VEGF release for at least four weeks. In vivo studies revealed that to obtain highly vascularized PLCL capsules (a) the optimal VEGF dose for the capsule was 50 µg and (b) the implantation time was four weeks when implanted into the greater omentum of Lewis rats; dense fibrous tissue accompanied by vessels completely infiltrated the scaffold and created sparse granulation tissue within the internal cavity of the capsule. The prepared pre-vascularized pouch enabled the islet graft survival and functioning for at least 50 days after islet transplantation. The proposed construct can be used to create a reliable pre-vascularized pouch for cell transplantation.


Asunto(s)
Bioingeniería , Trasplante de Islotes Pancreáticos , Neovascularización Fisiológica , Poliésteres/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Glucemia/análisis , Cápsulas/química , Cápsulas/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Inyecciones Intraperitoneales , Masculino , Estructura Molecular , Tamaño de la Partícula , Poliésteres/química , Ratas , Ratas Endogámicas Lew , Estreptozocina/administración & dosificación , Factores de Crecimiento Endotelial Vascular/química
6.
Islets ; 11(6): 129-140, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31498024

RESUMEN

Instant Blood-Mediated Inflammatory Reaction (IBMIR) is a major cause of graft loss during pancreatic islet transplantation, leading to a low efficiency of this treatment method and significantly limiting its broader clinical use. Within the procedure, transplanted islets obstruct intrahepatic portal vein branches and consequently restrict blood supply of downstream lying liver tissue, resulting typically in ischemic necrosis. The extent of ischemic lesions is influenced by mechanical obstruction and inflammation, as well as subsequent recanalization and regeneration capacity of recipient liver tissue. Monitoring of immediate liver perfusion impairment, which is directly related to the intensity of post-transplant inflammation and thrombosis (IBMIR), is essential for improving therapeutic and preventive strategies to improve overall islet graft survival. In this study, we present a new experimental model enabling direct quantification of liver perfusion impairment after pancreatic islet transplantation using ligation of hepatic arteries followed by contrast-enhanced magnetic resonance imaging (MRI). The ligation of hepatic arteries prevents the contrast agent from circumventing the portal vein obstruction and enables to discriminate between well-perfused and non-perfused liver tissue. Here we demonstrate that the extent of liver ischemia reliably reflects the number of transplanted islets. This model represents a useful tool for in vivo monitoring of biological effect of IBMIR-alleviating interventions as well as other experiments related to liver ischemia. This technical paper introduces a novel technique and its first application in experimental animals.


Asunto(s)
Embolia , Isquemia , Trasplante de Islotes Pancreáticos/efectos adversos , Hígado , Angiografía por Resonancia Magnética/métodos , Vena Porta , Animales , Embolia/complicaciones , Embolia/diagnóstico , Supervivencia de Injerto , Aumento de la Imagen/métodos , Isquemia/diagnóstico por imagen , Isquemia/etiología , Hígado/irrigación sanguínea , Hígado/diagnóstico por imagen , Hígado/patología , Modelos Teóricos , Ratas , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA