RESUMEN
O chna integerrima (Louri) Merr. is one of the two species of the genus Ochna (family Ochnaceae) found in Thailand. Its bark is used in traditional Thai medicine to treat digestive disorders. Phytochemical investigation of the crude MeOH extract of the root woods of O. integerrima furnished an unreported isoflavone glycoside, gerontoisoflavone A-4'-O-ß-D-xylopyranoside (1), together with the previously described irisolone methyl ether (2), iriskumaonin methyl ether (3), iriskumaonin (4), gerontoisoflavone A (5), isoprunetin (6), a flavone glycoside, vitexin (7), and a chromone derivative, lophilone A (8). The structure of 1 was elucidated by 1D and 2D NMR spectral analysis as well as HRMS data. Compounds 1-7 were evaluated for their 2,2-diphenyl-1-picrylhydrazil radical (DPPHâ) scavenging activity and antiplasmodial activity against a chloroquine- and pyrimethamine-resistant strain of Plasmodium falciparum (K1). Compounds 5 exhibited strongest scavenging activity, with a scavenging concentration at 50% (SC50) of 137.7 mM, while 4 and 6 displayed weak scavenging activity, with SC50 values of 4 and 5 times higher than that of 5. None of the tested compounds showed antiplasmodial activity against P. falciparum (K1) at a concentration of 5 mg/mL.
RESUMEN
The genetic diversity within the circumsporozoite surface protein (PvCSP) of Plasmodium vivax, the predominant malaria species in Thailand, is primarily observed in the northwestern region along the Thailand-Myanmar border. However, as P. vivax cases shift to southern provinces, particularly Yala Province near the Thailand-Malaysia border, PvCSP diversity remains understudied. Between 2018 and 2020, 89 P. vivax isolates were collected in Yala Province, a significant malaria hotspot. Employing polymerase chain reaction amplification, restriction fragment length polymorphism (PCR-RFLP), and DNA sequencing, the gene encoding PvCSP (Pvcsp) was analyzed. All Yala P. vivax isolates belonged to the VK210 type, distinct from strains in the western region near the Myanmar border. The central repeat region of Pvcsp revealed two common peptide repeat motifs-GDRADGQPA and GDRAAGQPA-across all southern isolates. Sequence analysis identified two subtypes, with S1 more prevalent (92%) than S2 (8%). This study underscores the limited diversity of VK210 variants of P. vivax populations in southern Thailand. These baseline findings facilitate monitoring for potential new parasite variants, aiding in the future control and management of P. vivax in the region.
RESUMEN
Due to the spread of resistance to front-line artemisinin derivatives worldwide, there is a need for new antimalarials. Tartrolon E (TrtE), a secondary metabolite of a symbiotic bacterium of marine bivalve mollusks, is a promising antimalarial because it inhibits the growth of sexual and asexual blood stages of Plasmodium falciparum at sub-nanomolar levels. The potency of TrtE warrants further investigation into its mechanism of action, cytotoxicity, and ease with which parasites may evolve resistance to it.
Asunto(s)
Antimaláricos , Artemisininas , Lactonas , Malaria Falciparum , Humanos , Plasmodium falciparum , Artemisininas/farmacología , Antimaláricos/farmacología , Malaria Falciparum/parasitologíaRESUMEN
Considering the importance of merozoite surface proteins (MSPs) as vaccine candidates, this study was conducted to investigate the polymorphism and genetic diversity of Plasmodium vivax merozoite surface protein 3-alpha (PvMSP-3α) in Thailand. To analyze genetic diversity, 118 blood samples containing P. vivax were collected from four malaria-endemic areas in western and southern Thailand. The DNA was extracted and amplified for the PvMSP-3α gene using nested PCR. The PCR products were genotyped by PCR-RFLP with Hha I and Alu I restriction enzymes. The combination patterns of Hha I and Alu I RFLP were used to identify allelic variants. Genetic evaluation and phylogenic analysis were performed on 13 sequences, including 10 sequences from our study and 3 sequences from GenBank. The results revealed three major types of PvMSP-3α, 91.5% allelic type A (â¼1.8 kb), 5.1% allelic type B (â¼1.5 kb), and 3.4% allelic type C (â¼1.2 kb), were detected based on PCR product size with different frequencies. Among all PvMSP-3α, 19 allelic subtypes with Hha I RFLP patterns were distinguished and 6 allelic subtypes with Alu I RFLP patterns were identified. Of these samples, 73 (61%) and 42 (35.6%) samples were defined as monoallelic subtype infection by Hha I and Alu I PCR-RFLP, respectively, whereas 77 (65.3%) samples were determined to be mixed-allelic subtype infection by the combination patterns of Hha I and Alu I RFLP. These results strongly indicate that PvMSP-3α gene is highly polymorphic, particularly in blood samples collected from the Thai-Myanmar border area (the western part of Thailand). The combination patterns of Hha I and Alu I RFLP of the PvMSP-3α gene could be considered for use as molecular epidemiologic markers for genotyping P. vivax isolates in Thailand.
RESUMEN
Clausena excavata is a medicinal plant widely distributed in Southeast Asia. It is used for a variety of indications, including to treat malaria. In our present study, a phytochemical study of the methanol extract from the stem bark of C. excavata led to the isolation of five pyranocoumarins, nordentatin (1: ), dentatin (2: ), kinocoumarin (3: ), clausarin (4: ), and clausenidin (5: ), and a coumarin, 8-hydroxy-3â³,4â³-dihydrocapnolactone-2',3'-diol (6: ). The isolation of compound 6: from C. excavata and the antiplasmodial activities against a multidrug-resistant K1 strain of Plasmodium falciparum of 1, 3: , and 5: were reported for the first time. Compounds 3: and 4: exhibited potent antiplasmodial activities with EC50 values of 1.10 and 0.58 µM, respectively, while 1: and 5: had EC50 values of 5.62 and 7.15 µM, respectively. A prenyl group attached to the C-3 or C-12 position on the pyranocoumarin ring probably plays an important role on the activity. A hydroxyl group at the C-10 position is also likely to enhance the activity.
Asunto(s)
Antimaláricos , Clausena , Plantas Medicinales , Clausena/química , Antimaláricos/farmacología , Antimaláricos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Corteza de la Planta , Plantas Medicinales/química , Plasmodium falciparumRESUMEN
BACKGROUND: Primaquine and tafenoquine are the only licensed drugs that effectively kill the hypnozoite stage and are used to prevent Plasmodium vivax malaria relapse. However, both primaquine and tafenoquine can cause acute hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient people with varying degrees of severity depending on G6PD variants. Additionally, primaquine efficacy against malaria parasites was decreased in individuals with impaired cytochrome P450 2D6 (CYP2D6) activity due to genetic polymorphisms. This study aimed to characterize G6PD and CYP2D6 genetic variations in vivax malaria patients from Yala province, a malaria-endemic area along the Thai-Malaysian border, and determine the biochemical properties of identified G6PD variants. METHODOLOGY/PRINCIPLE FINDINGS: Multiplexed high-resolution melting assay and DNA sequencing detected five G6PD variants, including G6PD Kaiping, G6PD Vanua Lava, G6PD Coimbra, G6PD Mahidol, and G6PD Kerala-Kalyan. Biochemical and structural characterization revealed that G6PD Coimbra markedly reduced catalytic activity and structural stability, indicating a high susceptibility to drug-induced hemolysis. While Kerala-Kalyan had minor effects, it is possible to develop mild adverse effects when receiving radical treatment. CYP2D6 genotyping was performed using long-range PCR and DNA sequencing, and the phenotypes were predicted using the combination of allelic variants. Decreased and no-function alleles were detected at frequencies of 53.4% and 14.2%, respectively. The most common alleles were CYP2D6*36+*10 (25.6%), *10 (23.9%), and *1 (22.2%). Additionally, 51.1% of the intermediate metabolizers showed CYP2D6*10/*36+*10 as the predominant genotype (15.9%). CONCLUSIONS/SIGNIFICANCE: Our findings provide insights about genetic variations of G6PD and CYP2D6 in 88 vivax malaria patients from Yala, which may influence the safety and effectiveness of radical treatment. Optimization of 8-aminoquinoline administration may be required for safe and effective treatment in the studied population, which could be a significant challenge in achieving the goal of eliminating malaria.
Asunto(s)
Antimaláricos , Citocromo P-450 CYP2D6 , Glucosafosfato Deshidrogenasa , Malaria Vivax , Malaria , Humanos , Antimaláricos/efectos adversos , Citocromo P-450 CYP2D6/genética , Variación Genética , Glucosafosfato Deshidrogenasa/genética , Hemólisis , Malaria/tratamiento farmacológico , Malaria Vivax/tratamiento farmacológico , Primaquina/efectos adversos , Pueblos del Sudeste Asiático/genéticaRESUMEN
The Malaria Evolution in South Asia (MESA) International Center of Excellence for Malaria Research (ICEMR) conducted research studies at multiple sites in India to record blood-slide positivity over time, but also to study broader aspects of the disease. From the Southwest of India (Goa) to the Northeast (Assam), the MESA-ICEMR invested in research equipment, operational capacity, and trained personnel to observe frequencies of Plasmodium falciparum and Plasmodium vivax infections, clinical presentations, treatment effectiveness, vector transmission, and reinfections. With Government of India partners, Indian and U.S. academics, and trained researchers on the ground, the MESA-ICEMR team contributes information on malaria in selected parts of India.
Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Asia/epidemiología , Humanos , India/epidemiología , Malaria/epidemiología , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Plasmodium falciparum , Plasmodium vivaxRESUMEN
The Malaria Evolution in South Asia (MESA) International Center for Excellence in Malaria Research (ICEMR) was established by the US National Institutes of Health (US NIH) as one of 10 malaria research centers in endemic countries. In 10 years of hospital-based and field-based work in India, the MESA-ICEMR has documented the changing epidemiology and transmission of malaria in four different parts of India. Malaria Evolution in South Asia-ICEMR activities, in collaboration with Indian partners, are carried out in the broad thematic areas of malaria case surveillance, vector biology and transmission, antimalarial resistance, pathogenesis, and host response. The program integrates insights from surveillance and field studies with novel basic science studies. This is a two-pronged approach determining the biology behind the disease patterns seen in the field, and generating new relevant biological questions about malaria to be tested in the field. Malaria Evolution in South Asia-ICEMR activities inform local and international stakeholders on the current status of malaria transmission in select parts of South Asia including updates on regional vectors of transmission of local parasites. The community surveys and new laboratory tools help monitor ongoing efforts to control and eliminate malaria in key regions of South Asia including the state of evolving antimalarial resistance in different parts of India, new host biomarkers of recent infection, and molecular markers of pathogenesis from uncomplicated and severe malaria.
Asunto(s)
Antimaláricos , Malaria , Antimaláricos/uso terapéutico , Asia/epidemiología , Humanos , India/epidemiología , Cooperación Internacional , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/epidemiología , National Institutes of Health (U.S.) , Estados Unidos/epidemiologíaRESUMEN
Malaria parasites have three genomes: a nuclear genome, a mitochondrial genome, and an apicoplast genome. Since the apicoplast is a plastid organelle of prokaryotic origin and has no counterpart in the human host, it can be a source of novel targets for antimalarials. Plasmodium falciparum DNA gyrase (PfGyr) A and B subunits both have apicoplast-targeting signals. First, to test the predicted localization of this enzyme in the apicoplast and the breadth of its function at the subcellular level, nuclear-encoded PfGyrA was disrupted using CRISPR/Cas9 gene editing. Isopentenyl pyrophosphate (IPP) is known to rescue parasites from apicoplast inhibitors. Indeed, successful growth and characterization of PfΔGyrA was possible in the presence of IPP. PfGyrA disruption was accompanied by loss of plastid acyl-carrier protein (ACP) immunofluorescence and the plastid genome. Second, ciprofloxacin, an antibacterial gyrase inhibitor, has been used for malaria prophylaxis, but there is a need for a more detailed description of the mode of action of ciprofloxacin in malaria parasites. As predicted, PfΔGyrA clone supplemented with IPP was less sensitive to ciprofloxacin but not to the nuclear topoisomerase inhibitor etoposide. At high concentrations, however, ciprofloxacin continued to inhibit IPP-rescued PfΔGyrA, possibly suggesting that ciprofloxacin may have an additional nonapicoplast target in P. falciparum. Overall, we confirm that PfGyrA is an apicoplast enzyme in the malaria parasite, essential for blood-stage parasites, and a possible target of ciprofloxacin but perhaps not the only target.
Asunto(s)
Antimaláricos , Apicoplastos , Apicoplastos/genética , Girasa de ADN/genética , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/genéticaRESUMEN
BACKGROUND: Efforts to study the biology of Plasmodium vivax liver stages, particularly the latent hypnozoites, have been hampered by the limited availability of P. vivax sporozoites. Anopheles stephensi is a major urban malaria vector in Goa and elsewhere in South Asia. Using P. vivax patient blood samples, a series of standard membrane-feeding experiments were performed with An. stephensi under the US NIH International Center of Excellence for Malaria Research (ICEMR) for Malaria Evolution in South Asia (MESA). The goal was to understand the dynamics of parasite development in mosquitoes as well as the production of P. vivax sporozoites. To obtain a robust supply of P. vivax sporozoites, mosquito-rearing and mosquito membrane-feeding techniques were optimized, which are described here. METHODS: Membrane-feeding experiments were conducted using both wild and laboratory-colonized An. stephensi mosquitoes and patient-derived P. vivax collected at the Goa Medical College and Hospital. Parasite development to midgut oocysts and salivary gland sporozoites was assessed on days 7 and 14 post-feeding, respectively. The optimal conditions for mosquito rearing and feeding were evaluated to produce high-quality mosquitoes and to yield a high sporozoite rate, respectively. RESULTS: Laboratory-colonized mosquitoes could be starved for a shorter time before successful blood feeding compared with wild-caught mosquitoes. Optimizing the mosquito-rearing methods significantly increased mosquito survival. For mosquito feeding, replacing patient plasma with naïve serum increased sporozoite production > two-fold. With these changes, the sporozoite infection rate was high (> 85%) and resulted in an average of ~ 22,000 sporozoites per mosquito. Some mosquitoes reached up to 73,000 sporozoites. Sporozoite production could not be predicted from gametocyte density but could be predicted by measuring oocyst infection and oocyst load. CONCLUSIONS: Optimized conditions for the production of high-quality P. vivax sporozoite-infected An. stephensi were established at a field site in South West India. This report describes techniques for producing a ready resource of P. vivax sporozoites. The improved protocols can help in future research on the biology of P. vivax liver stages, including hypnozoites, in India, as well as the development of anti-relapse interventions for vivax malaria.
Asunto(s)
Anopheles/parasitología , Mosquitos Vectores/parasitología , Plasmodium vivax/fisiología , Animales , Femenino , India , Plasmodium vivax/crecimiento & desarrollo , Esporozoítos/crecimiento & desarrollo , Esporozoítos/fisiologíaRESUMEN
Chronic malaria is a major public health problem and significant challenge for disease eradication efforts. Despite its importance, the biological factors underpinning chronic malaria are not fully understood. Recent studies have shown that host metabolic state can influence malaria pathogenesis and transmission, but its role in chronicity is not known. Here, with the goal of identifying distinct modifications in the metabolite profiles of acute versus chronic malaria, metabolomics was performed on plasma from Plasmodium-infected humans and nonhuman primates with a range of parasitemias and clinical signs. In rhesus macaques infected with Plasmodium coatneyi, significant alterations in amines, carnitines, and lipids were detected during a high parasitemic acute phase and many of these reverted to baseline levels once a low parasitemic chronic phase was established. Plasmodium gene expression, studied in parallel in the macaques, revealed transcriptional changes in amine, fatty acid, lipid and energy metabolism genes, as well as variant antigen genes. Furthermore, a common set of amines, carnitines, and lipids distinguished acute from chronic malaria in plasma from human Plasmodium falciparum cases. In summary, distinct host-parasite metabolic environments have been uncovered that characterize acute versus chronic malaria, providing insights into the underlying host-parasite biology of malaria disease progression.
Asunto(s)
Aminoácidos/sangre , Aminoácidos/metabolismo , Metabolismo de los Lípidos , Lípidos/sangre , Malaria/metabolismo , Adolescente , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Femenino , Expresión Génica , Glicerofosfolípidos/sangre , Glicerofosfolípidos/metabolismo , Interacciones Huésped-Parásitos/fisiología , Humanos , Macaca mulatta , Malaria/genética , Masculino , Metaboloma , Persona de Mediana Edad , Parasitemia , Plasmodium , Plasmodium falciparum , Adulto JovenRESUMEN
The unique relapsing nature of Plasmodium vivax infection is a major barrier to malaria eradication. Upon infection, dormant liver-stage forms, hypnozoites, linger for weeks to months and then relapse to cause recurrent blood-stage infection. Very little is known about hypnozoite biology; definitive biomarkers are lacking and in vitro platforms that support phenotypic studies are needed. Here, we recapitulate the entire liver stage of P. vivax in vitro, using a multiwell format that incorporates micropatterned primary human hepatocyte co-cultures (MPCCs). MPCCs feature key aspects of P. vivax biology, including establishment of persistent small forms and growing schizonts, merosome release, and subsequent infection of reticulocytes. We find that the small forms exhibit previously described hallmarks of hypnozoites, and we pilot MPCCs as a tool for testing candidate anti-hypnozoite drugs. Finally, we employ a hybrid capture strategy and RNA sequencing to describe the hypnozoite transcriptome and gain insight into its biology.
Asunto(s)
Antimaláricos/farmacología , Técnicas de Cultivo de Célula/métodos , Pruebas de Sensibilidad Parasitaria/métodos , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/crecimiento & desarrollo , Plasmodium vivax/metabolismo , Transcriptoma , Animales , Biomarcadores , Línea Celular/parasitología , Técnicas de Cocultivo , Fibroblastos , Hepatocitos/parasitología , Humanos , Técnicas In Vitro , Cinética , Hígado/parasitología , Malaria Vivax/tratamiento farmacológico , Ratones , Análisis de Secuencia de ARN , Esporozoítos/efectos de los fármacos , Esporozoítos/crecimiento & desarrollo , Esporozoítos/metabolismoRESUMEN
BACKGROUND: Eradication of malaria is difficult because of the ability of hypnozoite, the dormant liver-stage form of Plasmodium vivax, to cause relapse in patients. Research efforts to better understand the biology of P. vivax hypnozoite and design relapse prevention strategies have been hampered by the lack of a robust and reliable model for in vitro culture of liver-stage parasites. Although the HC-04 hepatoma cell line is used for culturing liver-stage forms of Plasmodium, these cells proliferate unrestrictedly and detach from the culture dish after several days, which limits their usefulness in a long-term hypnozoite assay. METHODS: A novel immortalized hepatocyte-like cell line (imHC) was evaluated for the capability to support P. vivax sporozoite infection. First, expression of basic hepatocyte markers and all major malaria sporozoite-associated host receptors in imHC was investigated. Next, in vitro hepatocyte infectivity and intracellular development of sporozoites in imHC were determined using an indirect immunofluorescence assay. Cytochrome P450 isotype activity was also measured to determine the ability of imHC to metabolize drugs. Finally, the anti-liver-stage agent primaquine was used to test this model for a drug sensitivity assay. RESULTS: imHCs maintained major hepatic functions and expressed the essential factors CD81, SR-BI and EphA2, which are required for host entry and development of the parasite in the liver. imHCs could be maintained long-term in a monolayer without overgrowth and thus served as a good, supportive substrate for the invasion and growth of P. vivax liver stages, including hypnozoites. The observed high drug metabolism activity and potent responses in liver-stage parasites to primaquine highlight the potential use of this imHC model for antimalarial drug screening. CONCLUSIONS: imHCs, which maintain a hepatocyte phenotype and drug-metabolizing enzyme expression, constitute an alternative host for in vitro Plasmodium liver-stage studies, particularly those addressing the biology of P. vivax hypnozoite. They potentially offer a novel, robust model for screening drugs against liver-stage parasites.
Asunto(s)
Línea Celular , Técnicas de Cultivo/métodos , Hepatocitos/parasitología , Plasmodium vivax , Esporozoítos , Animales , Investigación Biomédica/métodos , Humanos , Hígado/citología , Hígado/parasitología , Parasitología/métodos , Plasmodium vivax/patogenicidad , Plasmodium vivax/fisiología , Esporozoítos/patogenicidad , Esporozoítos/fisiologíaRESUMEN
Plasmodium falciparum and Plasmodium vivax cause the majority of human malaria cases. Research efforts predominantly focus on P. falciparum because of the clinical severity of infection and associated mortality rates. However, P. vivax malaria affects more people in a wider global range. Furthermore, unlike P. falciparum, P. vivax can persist in the liver as dormant hypnozoites that can be activated weeks to years after primary infection, causing relapse of symptomatic blood stages. This feature makes P. vivax unique and difficult to eliminate with the standard tools of vector control and treatment of symptomatic blood stage infection with antimalarial drugs. Infection by Plasmodium is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver. The most advanced malaria vaccine for P. falciparum (RTS,S, a subunit vaccine containing of a portion of the major sporozoite surface protein) conferred limited protection in Phase III trials, falling short of WHO-established vaccine efficacy goals. However, blocking the sporozoite stage of infection in P. vivax, before the establishment of the chronic liver infection, might be an effective malaria vaccine strategy to reduce the occurrence of relapsing blood stages. It is also thought that a multivalent vaccine comprising multiple sporozoite surface antigens will provide better protection, but a comprehensive analysis of proteins in P. vivax sporozoites is not available. To inform sporozoite-based vaccine development, we employed mass spectrometry-based proteomics to identify nearly 2,000 proteins present in P. vivax salivary gland sporozoites. Analysis of protein post-translational modifications revealed extensive phosphorylation of glideosome proteins as well as regulators of transcription and translation. Additionally, the sporozoite surface proteins CSP and TRAP, which were recently discovered to be glycosylated in P. falciparum salivary gland sporozoites, were also observed to be similarly modified in P. vivax sporozoites. Quantitative comparison of the P. vivax and P. falciparum salivary gland sporozoite proteomes revealed a high degree of similarity in protein expression levels, including among invasion-related proteins. Nevertheless, orthologs with significantly different expression levels between the two species could be identified, as well as highly abundant, species-specific proteins with no known orthologs. Finally, we employed chemical labeling of live sporozoites to isolate and identify 36 proteins that are putatively surface-exposed on P. vivax salivary gland sporozoites. In addition to identifying conserved sporozoite surface proteins identified by similar analyses of other Plasmodium species, our analysis identified several as-yet uncharacterized proteins, including a putative 6-Cys protein with no known ortholog in P. falciparum.
Asunto(s)
Proteínas de la Membrana/análisis , Plasmodium vivax/aislamiento & purificación , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Proteínas Protozoarias/análisis , Animales , Anopheles/parasitología , Malaria Vivax/metabolismo , Espectrometría de Masas , Proteogenómica , Glándulas Salivales/parasitología , Esporozoítos/metabolismoRESUMEN
Plasmodium vivax presents a great challenge to malaria control because of the ability of its dormant form in the liver, the hypnozoite, to cause relapse in otherwise fully recovered patient. Research efforts to better understand P. vivax hypnozoite biology have been hampered by the limited availability of its sporozoite form responsible for liver infection. Thus, the ability to cryopreserve and recover P. vivax sporozoites is an essential procedure. In this study, protective effects of hydroxyethyl starch (HES) alone and in combination with other cryoprotectants on P. vivax sporozoite recovery, viability and in vitro infectivity of a human liver HC-04 cell line were investigated. Sporozoites were harvested from P. vivax-infected female Anopheles mosquitoes and cryopreserved at a freezing rate of -1°C/minute to a final temperature of -80°C before being stored in a vapor phase liquid nitrogen tank. Cryopreserved sporozoites were thawed at 37°C and recovery of intact sporozoites assessed using a hemocytometer. Sporozoite viability and in vitro infectivity was measured using a gliding and an indirect immunofluorescence assay, respectively. A combination of 10% HES + 50% fetal bovine serum was the best cryopreservant compared to HES solution alone or mixed with cryopreservants such as dimethyl sulfoxide (DMSO) and sucrose. A mixture of bovine serum albumin, DMSO and sucrose in RPMI 1640 medium constituted an alternative cryopreservant. Sporozoites recovered from all cryopreservation media exhibited motility and infectivity of < 0.1% and < 0.001%, respectively. Thus, there is an urgent need for a vast improvement in cryopreservation procedures of viable and infective P. vivax sporozoites necessary for advancing research on hypnozoite biology.
Asunto(s)
Criopreservación/métodos , Plasmodium vivax/citología , Plasmodium vivax/patogenicidad , Esporozoítos/fisiología , Animales , Anopheles/parasitología , Bovinos , Línea Celular , Movimiento Celular , Crioprotectores , Femenino , Humanos , Derivados de Hidroxietil Almidón , Insectos Vectores/parasitología , Hígado/parasitología , Malaria Vivax/parasitología , Albúmina Sérica Bovina , VirulenciaRESUMEN
The pre-erythrocytic stages of Plasmodium vivax and Plasmodium falciparum remain challenging for experimental research in part due to limited access to sporozoites. An important factor limiting availability is the laboratory support required for producing infected mosquitoes and the ephemeral nature of isolated extracellular sporozoites. This study was undertaken to investigate methods to improve the availability of this limited resource by extending the longevity of the extracellular sporozoites after mosquito dissection. Our goal in this study was to determine whether buffer conditions more closely mimicking the insect microenvironment could prolong longevity of ex vivo P. vivax and P. falciparum sporozoites. The study compared the current standard dissection buffer RPMI1640 to Hank's Balanced Salt Solution with 1g/L glucose (HBSS-1) or 2g/L glucose (HBSS-2) and Grace's Insect Medium for ability to extend longevity of ex vivo P. vivax and P. falciparum sporozoites. The effect of each buffer on sporozoite viability was evaluated by measuring sporozoite gliding motility at 0, 4, 8, and 24h post-dissection from mosquito salivary glands. Comparisons of mean gliding percentages of ex vivo sporozoites in the different buffers and time points found that RPMI and Grace's both showed strong gliding at 0h. In contrast, by 4h post-dissection sporozoites in RPMI consistently had the lowest gliding activity, whereas sporozoites in Grace's had significantly more gliding compared to all other buffers at almost all time points. Our results indicate that P. vivax and P. falciparum sporozoites maintained in insect media rather than the standard dissection buffer RPMI and HBSS retain viability better over time.
Asunto(s)
Anopheles/parasitología , Plasmodium falciparum/fisiología , Plasmodium vivax/fisiología , Glándulas Salivales/parasitología , Esporozoítos/fisiología , Animales , Técnicas de Cultivo de Célula , Clonación de Organismos , Medios de Cultivo , Factores de TiempoRESUMEN
UNLABELLED: We constructed a near-saturation transposon mutant library for Burkholderia thailandensis, a low-virulence surrogate for the causative agent of melioidosis (Burkholderia pseudomallei). A primary set of nearly 42,000 unique mutants (~7.5 mutants/gene) was generated using transposon Tn5 derivatives. The strains carry insertions in 87% of the predicted protein-coding genes of the organism, corresponding to nearly all of those nonessential for growth on nutrient agar. To achieve high genome coverage, we developed procedures for efficient sequence identification of insertions in extremely GC-rich regions of DNA. To facilitate strain distribution, we created a secondary library with two mutants per gene for which most transposon locations had been confirmed by resequencing. A map of mutations in the two-allele library and procedures for obtaining strains can be found at http://tools.nwrce.org/tn_mutants/ and http://www.gs.washington.edu/labs/manoil/. The library should facilitate comprehensive mutant screens and serve as a source of strains to test predicted genotype-phenotype associations. IMPORTANCE: The Gram-negative bacterium Burkholderia pseudomallei is a biothreat agent due to its potential for aerosol delivery and intrinsic antibiotic resistance and because exposure produces pernicious infections. Large-scale studies of B. pseudomallei are limited by the fact that the organism must be manipulated under biological safety level 3 conditions. A close relative of B. pseudomallei called Burkholderia thailandensis, which can be studied under less restrictive conditions, has been validated as a low-virulence surrogate in studies of virulence, antibiotic resistance and other traits. To facilitate large-scale studies of B. thailandensis, we created a near-saturation, sequence-defined transposon mutant library of the organism. The library facilitates genetic studies that identify genotype-phenotype associations conserved in B. pseudomallei.
Asunto(s)
Burkholderia/genética , Elementos Transponibles de ADN , Biblioteca de Genes , Genética Microbiana/métodos , Biología Molecular/métodos , Mutagénesis Insercional , ADN Bacteriano/química , ADN Bacteriano/genética , Análisis de Secuencia de ADNRESUMEN
Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH) inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes.
Asunto(s)
ADN Protozoario , Resistencia a Medicamentos/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Plasmodium falciparum , Ploidias , Proteínas Protozoarias , Animales , Culicidae/parasitología , ADN Protozoario/biosíntesis , ADN Protozoario/genética , Dihidroorotato Deshidrogenasa , Sitios Genéticos/genética , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismoRESUMEN
BACKGROUND: The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. METHODOLOGY/PRINCIPAL FINDINGS: We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. CONCLUSIONS/SIGNIFICANCE: This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request.
Asunto(s)
Infecciones por Burkholderia/genética , Burkholderia pseudomallei/genética , Genómica , Redes y Vías Metabólicas/genética , Infecciones por Burkholderia/tratamiento farmacológico , Burkholderia pseudomallei/patogenicidad , Biología Computacional , Bases de Datos de Proteínas , Diseño de Fármacos , Genes Esenciales , Genoma Bacteriano , Humanos , Filogenia , Conformación ProteicaRESUMEN
BACKGROUND: Malaria remains a major human health problem, with no licensed vaccine currently available. Malaria infections initiate when infectious Plasmodium sporozoites are transmitted by Anopheline mosquitoes during their blood meal. Investigations of the malaria sporozoite are, therefore, of clear medical importance. However, sporozoites can only be produced in and isolated from mosquitoes, and their isolation results in large amounts of accompanying mosquito debris and contaminating microbes. METHODS: Here is described a discontinuous density gradient purification method for Plasmodium sporozoites that maintains parasite infectivity in vitro and in vivo and greatly reduces mosquito and microbial contaminants. RESULTS: This method provides clear advantages over previous approaches: it is rapid, requires no serum components, and can be scaled to purify >107 sporozoites with minimal operator involvement. Moreover, it can be effectively applied to both human (Plasmodium falciparum, Plasmodium vivax) and rodent (Plasmodium yoelii) infective species with excellent recovery rates. CONCLUSIONS: This novel method effectively purifies viable malaria sporozoites by greatly reducing contaminating mosquito debris and microbial burdens associated with parasite isolation. Large-scale preparations of purified sporozoites will allow for enhanced in vitro infections, proteomics, and biochemical characterizations. In conjunction with aseptic mosquito rearing techniques, this purification technique will also support production of live attenuated sporozoites for vaccination.