Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 84(16): 2674-2689, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38832939

RESUMEN

Drugs that perturb microtubules are commonly used to treat breast cancers of all subtypes in both early stage and metastatic disease, but they are effective in only approximately 50% of patients. High concentrations of microtubule-targeting agents can elicit mitotic arrest in cell culture models; however, recent evidence from primary and metastatic breast cancers has revealed that these agents only accumulate at intratumoral levels capable of inducing abnormal multipolar mitotic spindles, not mitotic arrest. Although the maintenance of multipolar spindles can generate cytotoxic rates of chromosomal instability (CIN), focusing of aberrant multipolar spindles into normal bipolar spindles can dramatically reduce CIN and confer resistance to microtubule poisons. Here, we showed that inhibition of the mitotic kinesin centromeric-associated protein-E (CENP-E) overcomes resistance caused by focusing multipolar spindles. Clinically relevant microtubule-targeting agents used a mechanistically conserved pathway to induce multipolar spindles without requiring centrosome amplification. Focusing could occur at any point in mitosis, with earlier focusing conferring greater resistance to antimicrotubule agents. CENP-E inhibition increased CIN on focused spindles by generating chromosomes that remained misaligned at spindle poles during anaphase, which substantially increased death in the resulting daughter cells. CENP-E inhibition synergized with diverse, clinically relevant microtubule poisons to potentiate cell death in cell lines and suppress tumor growth in orthotopic tumor models. These results suggest that primary resistance to microtubule-targeting drugs can be overcome by simultaneous inhibition of CENP-E. Significance: The increased incidence of polar chromosomes induced by inhibition of the mitotic kinesin CENP-E exacerbates chromosomal instability, reduces daughter cell viability, and improves sensitivity to microtubule-targeting therapies.


Asunto(s)
Neoplasias de la Mama , Inestabilidad Cromosómica , Proteínas Cromosómicas no Histona , Sinergismo Farmacológico , Microtúbulos , Humanos , Inestabilidad Cromosómica/efectos de los fármacos , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Animales , Ratones , Línea Celular Tumoral , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Mitosis/efectos de los fármacos , Antineoplásicos/farmacología
2.
PLoS Biol ; 21(10): e3002339, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37883329

RESUMEN

Microtubule-targeted agents are commonly used for cancer treatment, though many patients do not benefit. Microtubule-targeted drugs were assumed to elicit anticancer activity via mitotic arrest because they cause cell death following mitotic arrest in cell culture. However, we recently demonstrated that intratumoral paclitaxel concentrations are insufficient to induce mitotic arrest and rather induce chromosomal instability (CIN) via multipolar mitotic spindles. Here, we show in metastatic breast cancer and relevant human cellular models that this mechanism is conserved among clinically useful microtubule poisons. While multipolar divisions typically produce inviable progeny, multipolar spindles can be focused into near-normal bipolar spindles at any stage of mitosis. Using a novel method to quantify the rate of CIN, we demonstrate that cell death positively correlates with net loss of DNA. Spindle focusing decreases CIN and causes resistance to diverse microtubule poisons, which can be counteracted by addition of a drug that increases CIN without affecting spindle polarity. These results demonstrate conserved mechanisms of action and resistance for diverse microtubule-targeted agents. Trial registration: clinicaltrials.gov, NCT03393741.


Asunto(s)
Antineoplásicos , Venenos , Humanos , Microtúbulos/metabolismo , Huso Acromático , Mitosis , Cinetocoros , Antineoplásicos/farmacología , Venenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...