Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143728

RESUMEN

Numerous challenges hinder the development of neuroprotective treatments for Parkinson's disease, with a regularly identified issue being the lack of clinically relevant animal models. Viral vector overexpression of α-synuclein is widely considered the most relevant model; however, this has been limited by high variability and inconsistency. One potential method of optimisation is pairing it with a secondary insult such as FN075, a synthetic molecule demonstrated to accelerate α-synucleinopathy. Thus, the aim of this study was to investigate if sequential infusion of adeno-associated virus (AAV)-α-synuclein and FN075 into the rat brain can replicate α-synucleinopathy, nigrostriatal pathology and motor dysfunction associated with Parkinson's disease. Rats received a unilateral injection of AAV-α-synuclein (or AAV-green fluorescent protein) into two sites in the substantia nigra, followed 4 weeks later by unilateral injection of FN075 (or vehicle) into the striatum. Animals underwent behavioural testing every 4 weeks until sacrifice at 20 weeks, followed by immunohistochemistry assessment post-mortem. As anticipated, AAV-α-synuclein led to extensive overexpression of human α-synuclein throughout the nigrostriatal pathway, as well as elevated levels of phosphorylated and aggregated forms of the protein. However, the sequential administration of FN075 into the striatum did not exacerbate any of the α-synuclein pathology. Furthermore, despite the extensive α-synuclein pathology, neither administration of AAV-α-synuclein nor FN075, alone or in combination, was sufficient to induce dopaminergic degeneration or motor deficits. In conclusion, this approach did not replicate the key characteristics of Parkinson's disease, and further studies are required to create more representational models for testing of novel compounds and treatments for Parkinson's disease.

2.
J Neural Eng ; 21(2)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38479026

RESUMEN

Objective.Although human induced pluripotent stem cell (iPSC)-derived cell replacement for Parkinson's disease has considerable reparative potential, its full therapeutic benefit is limited by poor graft survival and dopaminergic maturation. Injectable biomaterial scaffolds, such as collagen hydrogels, have the potential to address these issues via a plethora of supportive benefits including acting as a structural scaffold for cell adherence, shielding from the host immune response and providing a reservoir of neurotrophic factors to aid survival and differentiation. Thus, the aim of this study was to determine if a neurotrophin-enriched collagen hydrogel could improve the survival and maturation of iPSC-derived dopaminergic progenitors (iPSC-DAPs) after transplantation into the rat parkinsonian brain.Approach.Human iPSC-DAPs were transplanted into the 6-hydroxydopamine-lesioned striatum either alone, with the neurotrophins GDNF and BDNF, in an unloaded collagen hydrogel, or in a neurotrophin-loaded collagen hydrogel.Post-mortem, human nuclear immunostaining was used to identify surviving iPSC-DAPs while tyrosine hydroxylase immunostaining was used to identify iPSC-DAPs that had differentiated into mature dopaminergic neurons.Main results.We found that iPSC-DAPs transplanted in the neurotrophin-enriched collagen hydrogel survived and matured significantly better than cells implanted without the biomaterial (8 fold improvement in survival and 16 fold improvement in dopaminergic differentiation). This study shows that transplantation of human iPSC-DAPs in a neurotrophin-enriched collagen hydrogel improves graft survival and maturation in the parkinsonian rat brain.Significance.The data strongly supports further investigation of supportive hydrogels for improving the outcome of iPSC-derived brain repair in Parkinson's disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Ratas , Animales , Humanos , Factores de Crecimiento Nervioso/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Hidrogeles/química , Enfermedad de Parkinson/terapia , Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/trasplante , Materiales Biocompatibles , Colágeno , Diferenciación Celular
3.
Biomolecules ; 11(11)2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34827685

RESUMEN

Animal models of Parkinson's disease, in which the human α-synuclein transgene is overexpressed in the nigrostriatal pathway using viral vectors, are widely considered to be the most relevant models of the human condition. However, although highly valid, these models have major limitations related to reliability and variability, with many animals exhibiting pronounced α-synuclein expression failing to demonstrate nigrostriatal neurodegeneration or motor dysfunction. Therefore, the aim of this study was to determine if sequential intra-nigral administration of AAV-α-synuclein followed by the small α-synuclein aggregating molecule, FN075, would enhance or precipitate the associated α-synucleinopathy, nigrostriatal pathology and motor dysfunction in subclinical models. Rats were given unilateral intra-nigral injections of AAV-α-synuclein (either wild-type or A53T mutant) followed four weeks later by a unilateral intra-nigral injection of FN075, after which they underwent behavioral testing for lateralized motor functionality until they were sacrificed for immunohistological assessment at 20 weeks after AAV administration. In line with expectations, both of the AAV vectors induced widespread overexpression of human α-synuclein in the substantia nigra and striatum. Sequential administration of FN075 significantly enhanced the α-synuclein pathology with increased density and accumulation of the pathological form of the protein phosphorylated at serine 129 (pS129-α-synuclein). However, despite this enhanced α-synuclein pathology, FN075 did not precipitate nigrostriatal degeneration or motor dysfunction in these subclinical AAV models. In conclusion, FN075 holds significant promise as an approach to enhancing the α-synuclein pathology in viral overexpression models, but further studies are required to determine if alternative administration regimes for this molecule could improve the reliability and variability in these models.


Asunto(s)
Sinucleinopatías , alfa-Sinucleína , Animales , Ratas , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...