Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 904: 167072, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714344

RESUMEN

Broflanilide is a novel insecticide that is classified as a non-competitive γ-aminobutyric acid (GABA) receptor antagonist. However, indiscriminate use can have negative effects on non-target species. The objective of this study was to determine the sub-lethal toxicity potential of broflanilide in early staged zebrafish. Embryos/larvae were assessed for multiple molecular and morphological endpoints following exposure to a range of concentrations of broflanilide. The insecticide did not affect hatch rate, the frequency of deformities, nor did it impact survival of zebrafish at exposure concentrations up to 500 µg/L over a 7-day period from hatch. There was also no effect on oxidative consumption rates in embryos, nor induction of reactive oxygen species in fish exposed up to 100 µg/L broflanilide. As oxidative stress was not prominent as a mechanism, we turned to RNA-seq to identify potential toxicity pathways. Gene networks related to neurotransmitter release and ion channels were altered in zebrafish, consistent with its mechanism of action of modulating GABA receptors, which regulate chloride channels. Noteworthy was that genes related to the circadian clock were induced by 1 µg/L broflanilide exposure. The locomotor activity of larval fish at 7 days was increased (i.e., hyperactivity) by broflanilide exposure based on a visual motor response test, corroborating expression data indicating neurotoxicity and motor dysfunction. This study improves the current understanding of the biological responses in fish to broflanilide exposure and contributes to risk assessment strategies for this novel pesticide.


Asunto(s)
Insecticidas , Contaminantes Químicos del Agua , Animales , Insecticidas/metabolismo , Pez Cebra/metabolismo , Redes Reguladoras de Genes , Larva , Canales Iónicos/metabolismo , Canales Iónicos/farmacología , Contaminantes Químicos del Agua/metabolismo , Embrión no Mamífero
2.
Data Brief ; 50: 109534, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37727589

RESUMEN

Broflanilide is a novel pesticide that can antagonize ion channels and disrupt neurotransmitter systems in the brain. Zebrafish larvae were exposed to either 0, 1 or 10- µg/L broflanilide in the water for a period of 7 days during early development. RNA extraction was conducted on larval zebrafish for RNA-seq analysis using the Illumina NovoSeq 6000. Raw sequence data were processed through fastp and clean reads obtained by removing adapter and poly-N sequences. Alignment and differential gene expression analysis was conducted using HISAT2, StringTie assembler, and FPKM (Fragments Per Kilobase of transcript sequence per Millions base pairs sequenced). Subnetwork enrichment analysis (SNEA) revealed that exposure to 1 µg/L broflanilide altered gene networks associated with axonal injury, depression, neuroinflammation, and traumatic brain injury while exposure to 10- µg/L broflanilide resulted in changes in gene networks associated with brain infarction and ischemia, excitotoxicity, and neurogenic inflammation. In addition, genes related to MPTP-induced neurotoxicity were altered by broflanilide which has relevance for Parkinson's disease. Several transcripts were identified as being associated with a disease network link to neurodegeneration and included phospholipase A2 activating protein, calpain 1, ATPase Na+/K+ transporting subunit alpha 2, glia maturation factor beta, sphingomyelin phosphodiesterase 1, leucine rich repeat kinase 2, glutamate ionotropic receptor NMDA type subunit 2C, lysosomal associated membrane protein, and calcium/calmodulin dependent protein kinase II alpha among others. Data presented here include disease biomarkers for a novel pesticide and can be reused to refine models that describe adverse outcome pathways for neurotoxicity.

3.
Biomolecules ; 13(2)2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36830627

RESUMEN

Butyrate, a short-chain fatty acid, is utilized by the gut epithelium as energy and it improves the gut epithelial barrier. More recently, it has been associated with beneficial effects on immune and cardiovascular homeostasis. Conversely, tumor necrosis factor alpha (TNFα) is a pro-inflammatory and pro-hypertensive cytokine. While butyrate and TNFα are both linked with hypertension, studies have not yet addressed their interaction in the colon. Here, we investigated the capacity of butyrate to modulate a host of effects of TNFα in primary rodent colonic cells in vitro. We measured ATP levels, cell viability, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial oxidative phosphorylation, and glycolytic activity in colonocytes following exposure to either butyrate or TNFα, or both. To address the potential mechanisms, transcripts related to oxidative stress, cell fate, and cell metabolism (Pdk1, Pdk2, Pdk4, Spr, Slc16a1, Slc16a3, Ppargc1a, Cs, Lgr5, Casp3, Tnfr2, Bax, Bcl2, Sod1, Sod2, and Cat) were measured, and untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the metabolic responses of colonocytes following exposure to butyrate and TNFα. We found that both butyrate and TNFα lowered cellular ATP levels towards a quiescent cell energy phenotype, characterized by decreased oxygen consumption and extracellular acidification. Co-treatment with butyrate ameliorated TNFα-induced cytotoxicity and the reduction in cell viability. Butyrate also opposed the TNFα-mediated decrease in MMP and mitochondrial-to-intracellular calcium ratios, suggesting that butyrate may protect colonocytes against TNFα-induced cytotoxicity by decreasing mitochondrial calcium flux. The relative expression levels of pyruvate dehydrogenase kinase 4 (Pdk4) were increased via co-treatment of butyrate and TNFα, suggesting the synergistic inhibition of glycolysis. TNFα alone reduced the expression of monocarboxylate transporters slc16a1 and slc16a3, suggesting effects of TNFα on butyrate uptake into colonocytes. Of the 185 metabolites that were detected with LC-MS, the TNFα-induced increase in biopterin produced the only significant change, suggesting an alteration in mitochondrial biogenesis in colonocytes. Considering the reports of elevated colonic TNFα and reduced butyrate metabolism in many conditions, including in hypertension, the present work sheds light on cellular interactions between TNFα and butyrate in colonocytes that may be important in understanding conditions of the colon.


Asunto(s)
Butiratos , Hipertensión , Ratas , Animales , Butiratos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Calcio/metabolismo , Cromatografía Liquida , Mucosa Intestinal/metabolismo , Espectrometría de Masas en Tándem , Hipertensión/metabolismo , Adenosina Trifosfato/metabolismo
4.
Sci Rep ; 12(1): 9454, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676522

RESUMEN

Phoenixin (PNX) is a highly conserved, novel hormone with diverse functions, including hypothalamic control of reproduction, appetite modulation, and regulation of energy metabolism and inflammation. While some functions appear conserved across vertebrates, additional research is required to fully characterize these complex pleiotropic effects. For instance, very little is known about transcriptome level changes associated with PNX exposure, including responses in the hypothalamic-pituitary-gonadal (HPG) axis, which is critical in vertebrate reproduction. In addition, the PNX system may be especially complex in fish, where an additional receptor is likely present in some species. The purpose of this study was to assess hypothalamic and ovarian transcriptomes after PNX-14 administration in female vitellogenic green-spotted puffer (Dichotomyctere nigroviridis). Steroid-related changes were also assessed in the liver and blood plasma. Hypothalamic responses included pro-inflammatory signals such as interleukin 1ß, possibly related to gut-brain axis functions, as well as suppression of cell proliferation. Ovarian responses were more widely downregulated across all identified pathways, which may reflect progression to a less transcriptionally active state in oocytes. Both organs shared regulation in transforming growth factor-ß and extracellular matrix remodeling (periostin) pathways. Reproductive processes were in general downregulated, but both inhibiting (bone morphogenetic protein 15 and follistatin) and promoting (17-hydroxyprogesterone) factors for oocyte maturation were identified. Select genes involved in reproduction (vitellogenins, estrogen receptors) in the liver were unresponsive to PNX-14 and higher doses may be needed to induce reproductive effects in D. nigroviridis. These results reinforce the complexity of PNX actions in diverse tissues and highlight important roles for this hormone in regulating the immune response, energy metabolism, and cell growth.


Asunto(s)
Tetraodontiformes , Transcriptoma , Animales , Femenino , Hormonas/metabolismo , Hipotálamo/metabolismo , Esteroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...