Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 8(9): 1988-1997, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23819499

RESUMEN

Protein-protein interactions (PPIs) are important in all aspects of cellular function, and there is interest in finding inhibitors of these contacts. However, PPIs with weak affinities and/or large interfaces have traditionally been more resistant to the discovery of inhibitors, partly because it is more challenging to develop high-throughput screening (HTS) methods that permit direct measurements of these physical interactions. Here, we explored whether the functional consequences of a weak PPI might be used as a surrogate for binding. As a model, we used the bacterial ATPase DnaK and its partners DnaJ and GrpE. Both DnaJ and GrpE bind DnaK and catalytically accelerate its ATP cycling, so we used stimulated nucleotide turnover to indirectly report on these PPIs. In pilot screens, we identified compounds that block activation of DnaK by either DnaJ or GrpE. Interestingly, at least one of these molecules blocked binding of DnaK to DnaJ, while another compound disrupted allostery between DnaK and GrpE without altering the physical interaction. These findings suggest that the activity of a reconstituted multiprotein complex might be used in some cases to identify allosteric inhibitors of challenging PPIs.


Asunto(s)
Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/métodos , Escherichia coli/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Proteínas del Choque Térmico HSP40/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Modelos Moleculares
2.
Biochemistry ; 52(32): 5354-64, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23865999

RESUMEN

The E3 ubiquitin ligase CHIP (C-terminus of Hsc70 Interacting Protein, a 70 kDa homodimer) binds to the molecular chaperone Hsc70 (a 70 kDa monomer), and this complex is important in both the ubiquitination of Hsc70 and the turnover of Hsc70-bound clients. Here we used NMR spectroscopy, biolayer interferometry, and fluorescence polarization to characterize the Hsc70-CHIP interaction. We found that CHIP binds tightly to two molecules of Hsc70 forming a 210 kDa complex, with a Kd of approximately 60 nM, and that the IEEVD motif at the C-terminus of Hsc70 (residues 642-646) is both necessary and sufficient for binding. Moreover, the same motif is required for CHIP-mediated ubiquitination of Hsc70 in vitro, highlighting its functional importance. Relaxation-based NMR experiments on the Hsc70-CHIP complex determined that the two partners move independently in solution, similar to "beads on a string". These results suggest that a dynamic C-terminal region of Hsc70 provides for flexibility between CHIP and the chaperone, allowing the ligase to "search" a large space and engage in productive interactions with a wide range of clients. In support of this suggestion, we find that deleting residues 623-641 of the C-terminal region, while retaining the IEEVD motif, caused a significant decrease in the efficiency of Hsc70 ubiquitination by CHIP.


Asunto(s)
Proteínas del Choque Térmico HSC70/química , Ubiquitina-Proteína Ligasas/química , Sitios de Unión , Proteínas del Choque Térmico HSC70/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Mol Cell ; 43(4): 599-612, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21855799

RESUMEN

The mechanisms by which ubiquitin ligases are regulated remain poorly understood. Here we describe a series of molecular events that coordinately regulate CHIP, a neuroprotective E3 implicated in protein quality control. Through their opposing activities, the initiator E2, Ube2w, and the specialized deubiquitinating enzyme (DUB), ataxin-3, participate in initiating, regulating, and terminating the CHIP ubiquitination cycle. Monoubiquitination of CHIP by Ube2w stabilizes the interaction between CHIP and ataxin-3, which through its DUB activity limits the length of chains attached to CHIP substrates. Upon completion of substrate ubiquitination, ataxin-3 deubiquitinates CHIP, effectively terminating the reaction. Our results suggest that functional pairing of E3s with ataxin-3 or similar DUBs represents an important point of regulation in ubiquitin-dependent protein quality control. In addition, the results shed light on disease pathogenesis in SCA3, a neurodegenerative disorder caused by polyglutamine expansion in ataxin-3.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Enzimas Ubiquitina-Conjugadoras/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Ataxina-3 , Humanos , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Estrés Fisiológico , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
4.
ACS Chem Biol ; 5(6): 611-22, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20481474

RESUMEN

Heat shock protein 70 (Hsp70) is a highly conserved molecular chaperone that plays multiple roles in protein homeostasis. In these various tasks, the activity of Hsp70 is shaped by interactions with co-chaperones, such as Hsp40. The Hsp40 family of co-chaperones binds to Hsp70 through a conserved J-domain, and these factors stimulate ATPase and protein-folding activity. Using chemical screens, we identified a compound, 115-7c, which acts as an artificial co-chaperone for Hsp70. Specifically, the activities of 115-7c mirrored those of a Hsp40; the compound stimulated the ATPase and protein-folding activities of a prokaryotic Hsp70 (DnaK) and partially compensated for a Hsp40 loss-of-function mutation in yeast. Consistent with these observations, NMR and mutagenesis studies indicate that the binding site for 115-7c is adjacent to a region on DnaK that is required for J-domain-mediated stimulation. Interestingly, we found that 115-7c and the Hsp40 do not compete for binding but act in concert. Using this information, we introduced additional steric bulk to 115-7c and converted it into an inhibitor. Thus, these chemical probes either promote or inhibit chaperone functions by regulating Hsp70-Hsp40 complex assembly at a native protein-protein interface. This unexpected mechanism may provide new avenues for exploring how chaperones and co-chaperones cooperate to shape protein homeostasis.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/química
5.
Curr Top Med Chem ; 9(15): 1337-51, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19860737

RESUMEN

The molecular chaperone, heat shock protein 70 (Hsp70), acts at multiple steps in a protein's life cycle, including during the processes of folding, trafficking, remodeling and degradation. To accomplish these various tasks, the activity of Hsp70 is shaped by a host of co-chaperones, which bind to the core chaperone and influence its functions. Genetic studies have strongly linked Hsp70 and its co-chaperones to numerous diseases, including cancer, neurodegeneration and microbial pathogenesis, yet the potential of this chaperone as a therapeutic target remains largely underexplored. Here, we review the current state of Hsp70 as a drug target, with a special emphasis on the important challenges and opportunities imposed by its co-chaperones, protein-protein interactions and allostery.


Asunto(s)
Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/metabolismo , Animales , Diterpenos/farmacología , Flavonoides/farmacología , Glucolípidos/farmacología , Guanidinas/farmacología , Proteínas HSP70 de Choque Térmico/química , Humanos , Conformación Proteica/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Pirimidinas/farmacología
6.
Cell Biochem Biophys ; 53(3): 127-34, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19159085

RESUMEN

In eukaryotes, reversible shuttling between the nucleus and cytoplasm is an important regulatory mechanism, particularly for many kinases and transcription factors. Inspired by the natural system, we recently developed a technology to control protein position in budding yeast using a chemical inducer of dimerization (CID). In this method, a nuclear export or localization signal is reversibly appended to a protein of interest by the CID, which effectively places its subcellular location under direct control of the chemical stimulus. Here, we explicitly tested the ability of this system to direct the nucleocytoplasmic transport of a panel of 16 representative kinases and transcription factors. From this set, we found that 12 targets (75%) are susceptible to re-positioning, suggesting that this method might be applicable to a range of targets. Interestingly, the four proteins that resisted mislocalization (Fun20p, Hcm1p, Pho4p, and Ste12p) are known to engage in a large number of protein-protein contacts. We suspect that, for these highly connected targets, the strength of the chemical signal may be insufficient to drive mislocalization and that proteins with relatively few partners might be most amenable to this approach. Collectively, these studies provide a necessary framework for the design of large-scale applications.


Asunto(s)
Núcleo Celular/metabolismo , Multimerización de Proteína/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Biomimética , Farmacorresistencia Fúngica , Genes Fúngicos/genética , Fenotipo , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Estructura Cuaternaria de Proteína/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo
7.
Yeast ; 25(8): 577-94, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18668531

RESUMEN

Protein localization is tightly linked with function, such that the subcellular distribution of a protein serves as an important control point regulating activity. Exploiting this regulatory mechanism, we present here a general approach by which protein location, and hence function, may be controlled on demand in the budding yeast. In this system a small molecule, rapamycin, is used to temporarily recruit a strong cellular address signal to the target protein, placing subcellular localization under control of the selective chemical stimulus. The kinetics of this system are rapid: rapamycin-directed nucleo-cytoplasmic transport is evident 10-12 min post-treatment and the process is reversible upon removal of rapamycin. Accordingly, we envision this platform as a promising approach for the systematic construction of conditional loss-of-function mutants. As proof of principle, we used this system to direct nuclear export of the essential heat shock transcription factor Hsf1p, thereby mimicking the cell-cycle arrest phenotype of an hsf1 temperature-sensitive mutant. Our drug-induced localization platform also provides a method by which protein localization can be uncoupled from endogenous cell signalling events, addressing the necessity or sufficiency of a given localization shift for a particular cell process. To illustrate, we directed the nuclear import of the calcineurin-dependent transcription factor Crz1p in the absence of native stimuli; this analysis directly substantiates that nuclear translocation of this protein is insufficient for its transcriptional activity. In total, this technology represents a powerful method for the generation of conditional alleles and directed mislocalization studies in yeast, with potential applicability on a genome-wide scale.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Fenotipo , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Sirolimus/farmacocinética , Sirolimus/farmacología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...