Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; PP2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875099

RESUMEN

OBJECTIVE: Wearable ultrasound is emerging as a new paradigm of real-time imaging in freely moving humans and has wide applications from cardiovascular health monitoring to human gesture recognition. However, current wearable ultrasound devices have typically employed pulse-echo imaging which requires high excitation voltages and sampling rates, posing safety risks, and requiring specialized hardware. Our objective was to develop and evaluate a wearable ultrasound system based on time delay spectrometry (TDS) that utilizes low-voltage excitation and significantly simplified instrumentation. METHODS: We developed a TDS-based ultrasound system that utilizes continuous, frequency-modulated sweeps at low excitation voltages. By mixing the transmit and receive signals, the system digitizes the ultrasound signal at audio frequency (kHz) sampling rates. Wearable ultrasound transducers were developed, and the system was characterized in terms of imaging performance, acoustic output, thermal characteristics, and applications in musculoskeletal imaging. RESULTS: The prototype TDS system is capable of imaging up to 6 cm of depth with signal-to-noise ratio of up to 42 dB at a spatial resolution of 0.33 mm. Acoustic and thermal radiation measurements were within clinically safe limits for continuous ultrasound imaging. We demonstrated the ability to use a 4-channel wearable system for dynamic imaging of muscle activity. CONCLUSION: We developed a wearable ultrasound imaging system using TDS to mitigate challenges with pulse echo-based wearable ultrasound imaging systems. Our device is capable of high-resolution, dynamic imaging of deep-seated tissue structures and is safe for long-term use. SIGNIFICANCE: This work paves the way for low-voltage wearable ultrasound imaging devices with significantly reduced hardware complexity.

2.
IEEE J Biomed Health Inform ; 28(5): 2713-2722, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38285571

RESUMEN

Impairment of hand functions in individuals with spinal cord injury (SCI) severely disrupts activities of daily living. Recent advances have enabled rehabilitation assisted by robotic devices to augment the residual function of the muscles. Traditionally, electromyography-based muscle activity sensing interfaces have been utilized to sense volitional motor intent to drive robotic assistive devices. However, the dexterity and fidelity of control that can be achieved with electromyography-based control have been limited due to inherent limitations in signal quality. We have developed and tested a muscle-computer interface (MCI) utilizing sonomyography to provide control of a virtual cursor for individuals with motor-incomplete spinal cord injury. We demonstrate that individuals with SCI successfully gained control of a virtual cursor by utilizing contractions of muscles of the wrist joint. The sonomyography-based interface enabled control of the cursor at multiple graded levels demonstrating the ability to achieve accurate and stable endpoint control. Our sonomyography-based muscle-computer interface can enable dexterous control of upper-extremity assistive devices for individuals with motor-incomplete SCI.


Asunto(s)
Músculo Esquelético , Traumatismos de la Médula Espinal , Interfaz Usuario-Computador , Humanos , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Músculo Esquelético/fisiopatología , Masculino , Adulto , Femenino , Ultrasonografía/métodos , Miografía/métodos , Persona de Mediana Edad , Robótica/métodos , Electromiografía/métodos , Adulto Joven , Procesamiento de Señales Asistido por Computador
3.
Sci Rep ; 13(1): 13273, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582852

RESUMEN

There have been significant advances in biosignal extraction techniques to drive external biomechatronic devices or to use as inputs to sophisticated human machine interfaces. The control signals are typically derived from biological signals such as myoelectric measurements made either from the surface of the skin or subcutaneously. Other biosignal sensing modalities are emerging. With improvements in sensing modalities and control algorithms, it is becoming possible to robustly control the target position of an end-effector. It remains largely unknown to what extent these improvements can lead to naturalistic human-like movement. In this paper, we sought to answer this question. We utilized a sensing paradigm called sonomyography based on continuous ultrasound imaging of forearm muscles. Unlike myoelectric control strategies which measure electrical activation and use the extracted signals to determine the velocity of an end-effector; sonomyography measures muscle deformation directly with ultrasound and uses the extracted signals to proportionally control the position of an end-effector. Previously, we showed that users were able to accurately and precisely perform a virtual target acquisition task using sonomyography. In this work, we investigate the time course of the control trajectories derived from sonomyography. We show that the time course of the sonomyography-derived trajectories that users take to reach virtual targets reflect the trajectories shown to be typical for kinematic characteristics observed in biological limbs. Specifically, during a target acquisition task, the velocity profiles followed a minimum jerk trajectory shown for point-to-point arm reaching movements, with similar time to target. In addition, the trajectories based on ultrasound imaging result in a systematic delay and scaling of peak movement velocity as the movement distance increased. We believe this is the first evaluation of similarities in control policies in coordinated movements in jointed limbs, and those based on position control signals extracted at the individual muscle level. These results have strong implications for the future development of control paradigms for assistive technologies.


Asunto(s)
Movimiento , Músculo Esquelético , Humanos , Movimiento/fisiología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Algoritmos
4.
Res Sq ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37292730

RESUMEN

There have been significant advances in biosignal extraction techniques to drive external biomechatronic devices or to use as inputs to sophisticated human machine interfaces. The control signals are typically derived from biological signals such as myoelectric measurements made either from the surface of the skin or subcutaneously. Other biosignal sensing modalities are emerging. With improvements in sensing modalities and control algorithms, it is becoming possible to robustly control the target position of a end effector. It remains largely unknown to what extent these improvements can lead to naturalistic human-like movement. In this paper, we sought to answer this question. We utilized a sensing paradigm called sonomyography based on continuous ultrasound imaging of forearm muscles. Unlike myoelectric control strategies which measure electrical activation and use the extracted signals to determine the velocity of an end-effector; sonomyography measures muscle deformation directly with ultrasound and uses the extracted signals to proportionally control the position of an end-effector. Previously, we showed that users were able to accurately and precisely perform a virtual target acquisition task using sonomyography. In this work, we investigate the time course of the control trajectories derived from sonomyography. We show that the time course of the sonomyography-derived trajectories that users take to reach virtual targets reflect the trajectories shown to be typical for kinematic characteristics observed in biological limbs. Specifically, during a target acquisition task, the velocity profiles followed a minimum jerk trajectory shown for point-to-point arm reaching movements, with similar time to target. In addition, the trajectories based on ultrasound imaging result in a systematic delay and scaling of peak movement velocity as the movement distance increased. We believe this is the first evaluation of similarities in control policies in coordinated movements in jointed limbs, and those based on position control signals extracted at the individual muscle level. These results have strong implications for the future development of control paradigms for assistive technologies.

5.
Front Sports Act Living ; 5: 1065470, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909358

RESUMEN

Introduction: Patellar tendon adaptations occur in response to mechanical load. Appropriate loading is necessary to elicit positive adaptations with increased risk of injury and decreased performance likely if loading exceeds the capacity of the tendon. The aim of the current study was to examine intra-individual associations between workloads and patellar tendon properties and neuromuscular performance in collegiate volleyball athletes. Methods: National Collegiate Athletics Association Division I men's volleyball athletes (n = 16, age: 20.33 ± 1.15 years, height: 193.50 ± 6.50 cm, body mass: 84.32 ± 7.99 kg, bodyfat%: 13.18 ± 4.72%) competing across 9 weeks of in-season competition participated. Daily measurements of external workloads (i.e., jump count) and internal workloads [i.e., session rating of perceived exertion (sRPE)] were recorded. Weekly measurements included neuromuscular performance assessments (i.e., countermovement jump, drop jump), and ultrasound images of the patellar tendon to evaluate structural adaptations. Repeated measures correlations (r-rm) assessed intra-individual associations among performance and patellar tendon metrics. Results: Workload measures exhibited significant negative small to moderate (r-rm =-0.26-0.31) associations with neuromuscular performance, negative (r-rm = -0.21-0.30), and positive (r-rm = 0.20-0.32) small to moderate associations with patellar tendon properties. Discussion: Monitoring change in tendon composition and performance adaptations alongside workloads may inform evidence-based frameworks toward managing and reducing the risk of the development of patellar tendinopathy in collegiate men's volleyball athletes.

6.
IEEE Int Conf Rehabil Robot ; 2022: 1-5, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36176162

RESUMEN

Several methods have been used to quantify human movement at different levels, from coordinated multi joint movements to those taking place at the single muscle level. These methods are developed either in order to allow us to interact with computers and machines, or to use such technologies for aiding rehabilitation among those with mobility impairments or movement disorders. Human machine interfaces typically rely on some existing human movement ability and measure it using motion tracking or inertial measurement units, while the rehabilitation applications may require us to measure human motor intent. Surface or implanted electrodes, electromyography, electroencephalography, and brain computer interfaces are beneficial in this regard, but have their own shortcomings. We have previously shown feasibility of using ultrasound imaging (Sonomyography) to infer human motor intent and allow users to control external biomechatronic devices such as prosthetics. Here, we asked users to freely move their hand in three different movement patterns, measuring their actual joint angles and passively computing their Sonomyographic output signal. We found a high correlation between these two signals, demonstrating that the Sonomyography signal is not only user-controlled and stable, but it is closely linked with the user's actual movement level. These results could help design wearable rehabilitation or human computer interaction devices based on Sonomyography to decode human motor intent.


Asunto(s)
Interfaces Cerebro-Computador , Movimiento , Electroencefalografía , Electromiografía , Estudios de Factibilidad , Humanos , Movimiento/fisiología , Músculos
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4955-4958, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33019099

RESUMEN

Upper limb prosthesis users currently lack haptic feedback from their terminal devices, which significantly limits their ability to meaningfully interact with their environment. Users therefore rely heavily on visual feedback when using terminal devices. Previously, it has been shown that force-related feedback from an end-effector or virtual environment can help the user minimize errors and improve performance. Currently, myoelectric control systems enable the user to control the velocity of terminal devices. We have developed a novel control method using ultrasound sensing, called sonomyography, that enables position control based on mechanical deformation of muscles. In this paper, we investigated whether the proprioceptive feedback from muscle deformation combined with vibrotactile haptic feedback can minimize the need for visual feedback. Able bodied subjects used sonomyography to control a virtual cursor, and performed a target acquisition task. The effect of visual and haptic feedback on performance of a target acquisition task was systematically tested. We found that subjects made large errors when they tried to reacquire a target without visual feedback, but in the presence of real-time haptic feedback, the precision of the target position improved, and were similar to when visual feedback was used for target acquisition. This result has implications for improving the performance of prosthetic control systems.


Asunto(s)
Miembros Artificiales , Retroalimentación Sensorial , Retroalimentación , Humanos
8.
IEEE Int Conf Rehabil Robot ; 2019: 830-836, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374733

RESUMEN

Prosthetics need to incorporate the users sense of proprioception into the control paradigm to provide intuitive control, and reduce training times and prosthetic rejection rates. In the absence of functional tasks with a prosthetic, virtual cursor control tasks have been used to train users to control multiple degrees of freedom. In this study, A proportional position signal was derived from the cross-sectional ultrasound images of the users forearm. We designed a virtual cursor control task with one degree of freedom to measure the users ability to repeatably and accurately acquire different levels of muscle flexion, using only their sense of proprioception. The experiment involved a target acquisition task, where the cursors height corresponded to the extent of muscle flexion. Users were asked to acquire targets on a screen. Visual feedback was disabled at certain times during the experiment, to isolate the effect of proprioception. We found that as visual feedback was taken away from the subjects, position error increased but their stability error did not change significantly. This indicates that users are not perfect at using only their proprioceptive sense to reacquire a level of muscle flexion, in the absence of haptic or visual feedback. However, they are adept at retaining an acquired flexion level without drifting. These results could help to quantify the role of proprioception in target acquisition tasks, in the absence of haptic or visual feedback.


Asunto(s)
Miembros Artificiales , Electromiografía , Propiocepción/fisiología , Ultrasonido , Adulto , Simulación por Computador , Femenino , Humanos , Masculino , Factores de Tiempo
9.
Sci Rep ; 9(1): 9499, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263115

RESUMEN

Technological advances in multi-articulated prosthetic hands have outpaced the development of methods to intuitively control these devices. In fact, prosthetic users often cite "difficulty of use" as a key contributing factor for abandoning their prostheses. To overcome the limitations of the currently pervasive myoelectric control strategies, namely unintuitive proportional control of multiple degrees-of-freedom, we propose a novel approach: proprioceptive sonomyographic control. Unlike myoelectric control strategies which measure electrical activation of muscles and use the extracted signals to determine the velocity of an end-effector; our sonomyography-based strategy measures mechanical muscle deformation directly with ultrasound and uses the extracted signals to proportionally control the position of an end-effector. Therefore, our sonomyography-based control is congruent with a prosthetic user's innate proprioception of muscle deformation in the residual limb. In this work, we evaluated proprioceptive sonomyographic control with 5 prosthetic users and 5 able-bodied participants in a virtual target achievement and holding task for 5 different hand motions. We observed that with limited training, the performance of prosthetic users was comparable to that of able-bodied participants and thus conclude that proprioceptive sonomyographic control is a robust and intuitive prosthetic control strategy.


Asunto(s)
Algoritmos , Amputados , Miembros Artificiales , Electromiografía , Propiocepción , Extremidad Superior , Adulto , Anciano , Humanos , Masculino , Persona de Mediana Edad
10.
IEEE Trans Haptics ; 12(4): 604-614, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30869631

RESUMEN

A basic challenge in perception research is to understand how sensory inputs from physical environments and the body are integrated in order to facilitate perceptual inferences. Thermal perception, which arises through heat transfer between extrinsic sources and body tissues, is an integral part of natural haptic experiences, and thermal feedback technologies have potential applications in wearable computing, virtual reality, and other areas. While physics dictates that thermal percepts can be slow, often unfolding over timescales measured in seconds, much faster perceptual responses can occur in the thermal grill illusion. The latter refers to a burning-like sensation that can be evoked when innocuous warm and cool stimuli are applied to the skin in juxtaposed fashion. Here, we show that perceptual response times to the thermal grill illusion decrease systematically with perceived intensity. Using results from behavioral experiments in combination with a physics-based description of tissue heating, we develop a simple model explaining the perception of the illusion through the evolution of internal tissue temperatures. The results suggest that improved understanding of the physical mechanisms of tissue heating may aid our understanding of thermal perception, as exemplified by the thermal grill illusion, and might point toward more efficient methods for thermal feedback.


Asunto(s)
Ilusiones/fisiología , Sensación Térmica/fisiología , Percepción del Tacto/fisiología , Adulto , Femenino , Humanos , Masculino , Piel , Temperatura , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...