Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood ; 139(26): 3737-3751, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35443029

RESUMEN

Inducing cell death by the sphingolipid ceramide is a potential anticancer strategy, but the underlying mechanisms remain poorly defined. In this study, triggering an accumulation of ceramide in acute myeloid leukemia (AML) cells by inhibition of sphingosine kinase induced an apoptotic integrated stress response (ISR) through protein kinase R-mediated activation of the master transcription factor ATF4. This effect led to transcription of the BH3-only protein Noxa and degradation of the prosurvival Mcl-1 protein on which AML cells are highly dependent for survival. Targeting this novel ISR pathway, in combination with the Bcl-2 inhibitor venetoclax, synergistically killed primary AML blasts, including those with venetoclax-resistant mutations, as well as immunophenotypic leukemic stem cells, and reduced leukemic engraftment in patient-derived AML xenografts. Collectively, these findings provide mechanistic insight into the anticancer effects of ceramide and preclinical evidence for new approaches to augment Bcl-2 inhibition in the therapy of AML and other cancers with high Mcl-1 dependency.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/uso terapéutico , Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Línea Celular Tumoral , Ceramidas/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
2.
EMBO Rep ; 23(4): e52904, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35156745

RESUMEN

Calreticulin (CALR) is recurrently mutated in myelofibrosis via a frameshift that removes an endoplasmic reticulum retention signal, creating a neoepitope potentially targetable by immunotherapeutic approaches. We developed a specific rat monoclonal IgG2α antibody, 4D7, directed against the common sequence encoded by both insertion and deletion mutations. 4D7 selectively bound to cells co-expressing mutant CALR and thrombopoietin receptor (TpoR) and blocked JAK-STAT signalling, TPO-independent proliferation and megakaryocyte differentiation of mutant CALR myelofibrosis progenitors by disrupting the binding of CALR dimers to TpoR. Importantly, 4D7 inhibited proliferation of patient samples with both insertion and deletion CALR mutations but not JAK2 V617F and prolonged survival in xenografted bone marrow models of mutant CALR-dependent myeloproliferation. Together, our data demonstrate a novel therapeutic approach to target a problematic disease driven by a recurrent somatic mutation that would normally be considered undruggable.


Asunto(s)
Calreticulina , Trastornos Mieloproliferativos , Animales , Anticuerpos Monoclonales , Calreticulina/genética , Calreticulina/metabolismo , Humanos , Janus Quinasa 2/metabolismo , Mutación , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Ratas
3.
Sci Rep ; 12(1): 454, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013382

RESUMEN

Sphingosine 1-phosphate (S1P) is a signaling lipid that has broad roles, working either intracellularly through various protein targets, or extracellularly via a family of five G-protein coupled receptors. Agents that selectively and specifically target each of the S1P receptors have been sought as both biological tools and potential therapeutics. JTE-013, a small molecule antagonist of S1P receptors 2 and 4 (S1P2 and S1P4) has been widely used in defining the roles of these receptors in various biological processes. Indeed, our previous studies showed that JTE-013 had anti-acute myeloid leukaemia (AML) activity, supporting a role for S1P2 in the biology and therapeutic targeting of AML. Here we examined this further and describe lipidomic analysis of AML cells that revealed JTE-013 caused alterations in sphingolipid metabolism, increasing cellular ceramides, dihydroceramides, sphingosine and dihydrosphingosine. Further examination of the mechanisms behind these observations showed that JTE-013, at concentrations frequently used in the literature to target S1P2/4, inhibits several sphingolipid metabolic enzymes, including dihydroceramide desaturase 1 and both sphingosine kinases. Collectively, these findings demonstrate that JTE-013 can have broad off-target effects on sphingolipid metabolism and highlight that caution must be employed in interpreting the use of this reagent in defining the roles of S1P2/4.


Asunto(s)
Pirazoles/química , Piridinas/química , Esfingolípidos/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Receptores de Esfingosina-1-Fosfato/metabolismo , Células HEK293 , Humanos , Cinética , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Receptores de Esfingosina-1-Fosfato/genética
4.
AJNR Am J Neuroradiol ; 42(7): 1341-1347, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34255730

RESUMEN

BACKGROUND AND PURPOSE: Multidetector CT has emerged as the standard of care imaging technique to evaluate cervical spine trauma. Our aim was to evaluate the performance of a convolutional neural network in the detection of cervical spine fractures on CT. MATERIALS AND METHODS: We evaluated C-spine, an FDA-approved convolutional neural network developed by Aidoc to detect cervical spine fractures on CT. A total of 665 examinations were included in our analysis. Ground truth was established by retrospective visualization of a fracture on CT by using all available CT, MR imaging, and convolutional neural network output information. The ĸ coefficients, sensitivity, specificity, and positive and negative predictive values were calculated with 95% CIs comparing diagnostic accuracy and agreement of the convolutional neural network and radiologist ratings, respectively, compared with ground truth. RESULTS: Convolutional neural network accuracy in cervical spine fracture detection was 92% (95% CI, 90%-94%), with 76% (95% CI, 68%-83%) sensitivity and 97% (95% CI, 95%-98%) specificity. The radiologist accuracy was 95% (95% CI, 94%-97%), with 93% (95% CI, 88%-97%) sensitivity and 96% (95% CI, 94%-98%) specificity. Fractures missed by the convolutional neural network and by radiologists were similar by level and location and included fractured anterior osteophytes, transverse processes, and spinous processes, as well as lower cervical spine fractures that are often obscured by CT beam attenuation. CONCLUSIONS: The convolutional neural network holds promise at both worklist prioritization and assisting radiologists in cervical spine fracture detection on CT. Understanding the strengths and weaknesses of the convolutional neural network is essential before its successful incorporation into clinical practice. Further refinements in sensitivity will improve convolutional neural network diagnostic utility.


Asunto(s)
Fracturas de la Columna Vertebral , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/lesiones , Humanos , Redes Neurales de la Computación , Estudios Retrospectivos , Sensibilidad y Especificidad , Fracturas de la Columna Vertebral/diagnóstico por imagen , Tomografía Computarizada por Rayos X
5.
Biochem J ; 476(21): 3211-3226, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31652307

RESUMEN

Sphingosine kinase 1 (SK1) is a signalling enzyme that catalyses the phosphorylation of sphingosine to generate the bioactive lipid sphingosine 1-phosphate (S1P). A number of SK1 inhibitors and chemotherapeutics can induce the degradation of SK1, with the loss of this pro-survival enzyme shown to significantly contribute to the anti-cancer properties of these agents. Here we define the mechanistic basis for this degradation of SK1 in response to SK1 inhibitors, chemotherapeutics, and in natural protein turnover. Using an inducible SK1 expression system that enables the degradation of pre-formed SK1 to be assessed independent of transcriptional or translational effects, we found that SK1 was degraded primarily by the proteasome since several proteasome inhibitors blocked SK1 degradation, while lysosome, cathepsin B or pan caspase inhibitors had no effect. Importantly, we demonstrate that this proteasomal degradation of SK1 was enabled by its ubiquitination at Lys183 that appears facilitated by SK1 inhibitor-induced conformational changes in the structure of SK1 around this residue. Furthermore, using yeast two-hybrid screening, we identified Kelch-like protein 5 (KLHL5) as an important protein adaptor linking SK1 to the cullin 3 (Cul3) ubiquitin ligase complex. Notably, knockdown of KLHL5 or Cul3, use of a cullin inhibitor or a dominant-negative Cul3 all attenuated SK1 degradation. Collectively this data demonstrates the KLHL5/Cul3-based E3 ubiquitin ligase complex is important for regulation of SK1 protein stability via Lys183 ubiquitination, in response to SK1 inhibitors, chemotherapy and for normal SK1 protein turnover.


Asunto(s)
Proteínas Portadoras/metabolismo , Lisina/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Secuencias de Aminoácidos , Proteínas Portadoras/genética , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Humanos , Lisina/genética , Proteínas de Microfilamentos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Ubiquitinación
6.
Oncogene ; 38(8): 1151-1165, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30250299

RESUMEN

While the two mammalian sphingosine kinases, SK1 and SK2, both catalyze the generation of pro-survival sphingosine 1-phosphate (S1P), their roles vary dependent on their different subcellular localization. SK1 is generally found in the cytoplasm or at the plasma membrane where it can promote cell proliferation and survival. SK2 can be present at the plasma membrane where it appears to have a similar function to SK1, but can also be localized to the nucleus, endoplasmic reticulum or mitochondria where it mediates cell death. Although SK2 has been implicated in cancer initiation and progression, the mechanisms regulating SK2 subcellular localization are undefined. Here, we report that SK2 interacts with the intermediate chain subunits of the retrograde-directed transport motor complex, cytoplasmic dynein 1 (DYNC1I1 and -2), and we show that this interaction, particularly with DYNC1I1, facilitates the transport of SK2 away from the plasma membrane. DYNC1I1 is dramatically downregulated in patient samples of glioblastoma (GBM), where lower expression of DYNC1I1 correlates with poorer patient survival. Notably, low DYNC1I1 expression in GBM cells coincided with more SK2 localized to the plasma membrane, where it has been recently implicated in oncogenesis. Re-expression of DYNC1I1 reduced plasma membrane-localized SK2 and extracellular S1P formation, and decreased GBM tumor growth and tumor-associated angiogenesis in vivo. Consistent with this, chemical inhibition of SK2 reduced the viability of patient-derived GBM cells in vitro and decreased GBM tumor growth in vivo. Thus, these findings demonstrate a tumor-suppressive function of DYNC1I1, and uncover new mechanistic insights into SK2 regulation which may have implications in targeting this enzyme as a therapeutic strategy in GBM.


Asunto(s)
Dineínas Citoplasmáticas/genética , Genes Supresores de Tumor , Glioblastoma/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Apoptosis/genética , Carcinogénesis/genética , Línea Celular Tumoral , Membrana Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Células HEK293 , Humanos , Lisofosfolípidos/genética , Ratones , Esfingosina/análogos & derivados , Esfingosina/genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cancer Res ; 77(18): 4823-4834, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28729416

RESUMEN

Sphingosine kinase 1 (SK1) is a key regulator of the cellular balance between proapoptotic and prosurvival sphingolipids. Oncogenic signaling by SK1 relies on its localization to the plasma membrane, which is mediated by the calcium and integrin binding protein CIB1 via its Ca2+-myristoyl switch function. Here we show that another member of the CIB family, CIB2, plays a surprisingly opposite role to CIB1 in the regulation of SK1 signaling. CIB2 bound SK1 on the same site as CIB1, yet it lacks the Ca2+-myristoyl switch function. As a result, CIB2 blocked translocation of SK1 to the plasma membrane and inhibited its subsequent signaling, which included sensitization to TNFα-induced apoptosis and inhibition of Ras-induced neoplastic transformation. CIB2 was significantly downregulated in ovarian cancer and low CIB2 expression was associated with poor prognosis in ovarian cancer patients. Notably, reintroduction of CIB2 in ovarian cancer cells blocked plasma membrane localization of endogenous SK1, reduced in vitro neoplastic growth and tumor growth in mice, and suppressed cell motility and invasiveness both in vitro and in vivo Consistent with the in vitro synergistic effects between the SK1-specific inhibitor SK1-I and standard chemotherapeutics, expression of CIB2 also sensitized ovarian cancer cells to carboplatin. Together, these findings identify CIB2 as a novel endogenous suppressor of SK1 signaling and potential prognostic marker and demonstrate the therapeutic potential of SK1 in this gynecologic malignancy. Cancer Res; 77(18); 4823-34. ©2017 AACR.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Unión al Calcio/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proteínas de Unión al Calcio/genética , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Estadificación de Neoplasias , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Pronóstico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Oncotarget ; 8(27): 43602-43616, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28467788

RESUMEN

The proteasome inhibitor bortezomib has proven to be invaluable in the treatment of myeloma. By exploiting the inherent high immunoglobulin protein production of malignant plasma cells, bortezomib induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), resulting in myeloma cell death. In most cases, however, the disease remains incurable highlighting the need for new therapeutic targets. Sphingosine kinase 2 (SK2) has been proposed as one such therapeutic target for myeloma. Our observations that bortezomib and SK2 inhibitors independently elicited induction of ER stress and the UPR prompted us to examine potential synergy between these agents in myeloma. Targeting SK2 synergistically contributed to ER stress and UPR activation induced by bortezomib, as evidenced by activation of the IRE1 pathway and stress kinases JNK and p38MAPK, thereby resulting in potent synergistic myeloma apoptosis in vitro. The combination of bortezomib and SK2 inhibition also exhibited strong in vivo synergy and favourable effects on bone disease. Therefore, our studies suggest that perturbations of sphingolipid signalling can synergistically enhance the effects seen with proteasome inhibition, highlighting the potential for the combination of these two modes of increasing ER stress to be formally evaluated in clinical trials for the treatment of myeloma patients.


Asunto(s)
Antineoplásicos/farmacología , Bortezomib/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mieloma Múltiple/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Humanos , Modelos Biológicos , Terapia Molecular Dirigida , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/mortalidad , Mieloma Múltiple/patología , Inhibidores de Proteasoma/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Blood ; 129(6): 771-782, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-27956387

RESUMEN

Acute myeloid leukemia (AML) is an aggressive malignancy where despite improvements in conventional chemotherapy and bone marrow transplantation, overall survival remains poor. Sphingosine kinase 1 (SPHK1) generates the bioactive lipid sphingosine 1-phosphate (S1P) and has established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers. The role and targeting of SPHK1 in primary AML, however, has not been previously investigated. Here we show that SPHK1 is overexpressed and constitutively activated in primary AML patient blasts but not in normal mononuclear cells. Subsequent targeting of SPHK1 induced caspase-dependent cell death in AML cell lines, primary AML patient blasts, and isolated AML patient leukemic progenitor/stem cells, with negligible effects on normal bone marrow CD34+ progenitors from healthy donors. Furthermore, administration of SPHK1 inhibitors to orthotopic AML patient-derived xenografts reduced tumor burden and prolonged overall survival without affecting murine hematopoiesis. SPHK1 inhibition was associated with reduced survival signaling from S1P receptor 2, resulting in selective downregulation of the prosurvival protein MCL1. Subsequent analysis showed that the combination of BH3 mimetics with either SPHK1 inhibition or S1P receptor 2 antagonism triggered synergistic AML cell death. These results support the notion that SPHK1 is a bona fide therapeutic target for the treatment of AML.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Clorometilcetonas de Aminoácidos/farmacología , Amino Alcoholes/farmacología , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Inhibidores de Caspasas/farmacología , Caspasas/genética , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Lisofosfolípidos/metabolismo , Ratones , Ratones Endogámicos NOD , Terapia Molecular Dirigida , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Oncotarget ; 7(40): 64886-64899, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27588496

RESUMEN

While both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear. Some studies have suggested an anti-proliferative/pro-apoptotic function for SK2, while others indicate it has a pro-survival role and its inhibition can have anti-cancer effects. Our analysis of gene expression data revealed that SK2 is upregulated in many human cancers, but only to a small extent (up to 2.5-fold over normal tissue). Based on these findings, we examined the effect of different levels of cellular SK2 and showed that high-level overexpression reduced cell proliferation and survival, and increased cellular ceramide levels. In contrast, however, low-level SK2 overexpression promoted cell survival and proliferation, and induced neoplastic transformation in vivo. These findings coincided with decreased nuclear localization and increased plasma membrane localization of SK2, as well as increases in extracellular S1P formation. Hence, we have shown for the first time that SK2 can have a direct role in promoting oncogenesis, supporting the use of SK2-specific inhibitors as anti-cancer agents.


Asunto(s)
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Apoptosis , Carcinogénesis , Proliferación Celular , Supervivencia Celular , Ceramidas/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Lisofosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Transporte de Proteínas , Esfingosina/análogos & derivados , Esfingosina/metabolismo
11.
Oncotarget ; 6(9): 7065-83, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25788259

RESUMEN

The dynamic balance of cellular sphingolipids, the sphingolipid rheostat, is an important determinant of cell fate, and is commonly deregulated in cancer. Sphingosine 1-phosphate is a signaling molecule with anti-apoptotic, pro-proliferative and pro-angiogenic effects, while conversely, ceramide and sphingosine are pro-apoptotic. The sphingosine kinases (SKs) are key regulators of this sphingolipid rheostat, and are attractive targets for anti-cancer therapy. Here we report a first-in-class ATP-binding site-directed small molecule SK inhibitor, MP-A08, discovered using an approach of structural homology modelling of the ATP-binding site of SK1 and in silico docking with small molecule libraries. MP-A08 is a highly selective ATP competitive SK inhibitor that targets both SK1 and SK2. MP-A08 blocks pro-proliferative signalling pathways, induces mitochondrial-associated apoptosis in a SK-dependent manner, and reduces the growth of human lung adenocarcinoma tumours in a mouse xenograft model by both inducing tumour cell apoptosis and inhibiting tumour angiogenesis. Thus, this selective ATP competitive SK inhibitor provides a promising candidate for potential development as an anti-cancer therapy, and also, due to its different mode of inhibition to other known SK inhibitors, both validates the SKs as targets for anti-cancer therapy, and represents an important experimental tool to study these enzymes.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Adenosina Trifosfato/química , Antineoplásicos/química , Inhibidores Enzimáticos/química , Neoplasias Pulmonares/tratamiento farmacológico , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Adenocarcinoma/metabolismo , Animales , Apoptosis , Sitios de Unión , Línea Celular , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Células MCF-7 , Masculino , Ratones , Ratones Transgénicos , Conformación Molecular , Mutagénesis , Mutación , Trasplante de Neoplasias , Neovascularización Patológica , Unión Proteica , Esfingolípidos/química
12.
Microcirculation ; 18(7): 583-97, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21672077

RESUMEN

OBJECTIVES: The use of endothelial progenitor cells in vascular therapies has been limited due to their low numbers present in the bone marrow and peripheral blood. The aim of this study was to investigate the effect of sphingosine kinase on the de-differentiation of mature human endothelial cells toward a progenitor phenotype. METHODS: The lipid enzyme sphingosine kinase-1 was lentivirally over-expressed in human umbilical vein endothelial cells and cells were analyzed for progenitor phenotype and function. RESULTS: Sphingosine kinase-1 mRNA expression was induced approximately 150-fold with a resultant 20-fold increase in sphingosine kinase-1 enzymatic activity. The mRNA expression of the progenitor cell markers CD34, CD133, and CD117 and transcription factor NANOG increased, while the endothelial cell markers analyzed were largely unchanged. The protein level of mature endothelial cell surface markers CD31, CD144, and von Willebrand factor significantly decreased compared to controls. In addition, functional assays provided further evidence for a de-differentiated phenotype with increased viability, reduced uptake of acetylated low-density lipoprotein and decreased tube formation in Matrigel in the cells over-expressing sphingosine kinase-1. CONCLUSIONS: These findings suggest that over-expression of sphingosine kinase-1 in human endothelial cells promotes, in part, their de-differentiation to a progenitor cell phenotype, and is thus a potential tool for the generation of a large population of vascular progenitor cells for therapeutic use.


Asunto(s)
Desdiferenciación Celular , Células Endoteliales/enzimología , Regulación Enzimológica de la Expresión Génica , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Células Madre/enzimología , Antígenos de Diferenciación/biosíntesis , Antígenos de Diferenciación/genética , Células Endoteliales/citología , Células HEK293 , Humanos , Lentivirus , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Células Madre/citología , Transducción Genética
13.
Br J Cancer ; 104(7): 1135-43, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21364580

RESUMEN

BACKGROUND: Therapies targeting ERBB2 have shown success in the clinic. However, response is not determined solely by expression of ERBB2. Levels of ERBB3, its preferred heterodimerisation partner and ERBB ligands may also have a role. METHODS: We measured NRG1 expression by real-time quantitative RT-PCR and ERBB receptors by western blotting and immunohistochemistry in bladder tumours and cell lines. RESULTS: NRG1α and NRG1ß showed significant coordinate expression. NRG1ß was upregulated in 78% of cell lines. In tumours, there was a greater range of expression with a trend towards increased NRG1α with higher stage and grade. Increased expression of ERBB proteins was detected in 15% (EGFR), 20% (ERBB2), 41% (ERBB3) and 0% (ERBB4) of cell lines. High EGFR expression was detected in 28% of tumours, associated with grade and stage (P=0.05; P=0.04). Moderate or high expression of ERBB2 was detected in 22% and was associated with stage (P=0.025). Cytoplasmic ERBB3 was associated with high tumour grade (P=0.01) and with ERBB2 positivity. In cell lines, NRG1ß expression was significantly inversely related to ERBB3, but this was not confirmed in tumours. CONCLUSION: There is a wide spectrum of NRG1 and ERBB receptor expression in bladder cancer. In advanced tumours, EGFR, ERBB2 and ERBB3 upregulation is common and there is a relationship between expression of ERBB2 and ERBB3 but not the NRG1 ligand.


Asunto(s)
Neurregulina-1/análisis , Receptor ErbB-2/análisis , Receptor ErbB-3/análisis , Neoplasias de la Vejiga Urinaria/química , Línea Celular Tumoral , Receptores ErbB/análisis , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Neurregulina-1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de la Vejiga Urinaria/patología
14.
Int J Biochem Cell Biol ; 43(3): 342-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21075214

RESUMEN

Sphingosine kinase 1 (SK1) is an important regulator of cellular signalling that has gained recent attention as a potential target for anti-cancer therapies. SK1 activity, subcellular localization and oncogenic function are regulated by phosphorylation and dephosphorylation at Ser225. ERK1/2 have been identified as the protein kinases responsible for phosphorylation and activation of SK1. Conversely, dephosphorylation and deactivation of SK1 occurs by protein phosphatase 2A (PP2A). Active PP2A, however, is a heterotrimer, composed of tightly associated catalytic and structural subunits that can interact with an array of regulatory subunits, which are critical for determining holoenzyme substrate specificity and subcellular localization. Thus, PP2A represents a large family of holoenzyme complexes with different activities and diverse substrate specificities. To date the regulatory subunit essential for targeting PP2A to SK1 has remained undefined. Here, we demonstrate a critical role for the B'α (B56α/PR61α/PPP2R5A) regulatory subunit of PP2A in SK1 dephosphorylation. B'α was found to interact with the c-terminus of SK1, and reduce SK1 phosphorylation when overexpressed, while having no effect on upstream ERK1/2 activation. siRNA-mediated knockdown of B'α increased SK1 phosphorylation, activity and membrane localization of endogenous SK1. Furthermore, overexpression of B'α blocked agonist-induced translocation of SK1 to the plasma membrane and abrogated SK1-induced neoplastic transformation of NIH3T3 fibroblasts. Thus, the PP2A-B'α holoenzyme appears to function as an important endogenous regulator of SK1.


Asunto(s)
Membrana Celular/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Transformación Celular Neoplásica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inmunoprecipitación , Ratones , Células 3T3 NIH , Fosforilación , Unión Proteica , Transporte de Proteínas
15.
J Biol Chem ; 285(1): 483-92, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19854831

RESUMEN

SK1 (sphingosine kinase 1) plays an important role in many aspects of cellular regulation. Most notably, elevated cellular SK1 activity leads to increased cell proliferation, protection from apoptosis, and induction of neoplastic transformation. We have previously shown that translocation of SK1 from the cytoplasm to the plasma membrane is integral for oncogenesis mediated by this enzyme. The molecular mechanism mediating this translocation of SK1 has remained undefined. Here, we demonstrate a direct role for CIB1 (calcium and integrin-binding protein 1) in this process. We show that CIB1 interacts with SK1 in a Ca(2+)-dependent manner at the previously identified "calmodulin-binding site" of SK1. We also demonstrate that CIB1 functions as a Ca(2+)-myristoyl switch, providing a mechanism whereby it translocates SK1 to the plasma membrane. Both small interfering RNA knockdown of CIB1 and the use of a dominant-negative CIB1 we have generated prevent the agonist-dependent translocation of SK1. Furthermore, we demonstrate the requirement of CIB1-mediated translocation of SK1 in controlling cellular sphingosine 1-phosphate generation and associated anti-apoptotic signaling.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Membrana Celular/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Apoptosis/efectos de los fármacos , Sitios de Unión , Calcio/metabolismo , Calmodulina/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genes Dominantes/genética , Humanos , Ácido Mirístico/metabolismo , FN-kappa B/metabolismo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
16.
Int J Biochem Cell Biol ; 41(4): 822-7, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18775504

RESUMEN

Sphingosine kinase 1 (SK1) catalyses the generation of sphingosine 1-phosphate (S1P), a bioactive phospholipid that influences a diverse range of cellular processes, including proliferation, survival, adhesion, migration, morphogenesis and differentiation. SK1 is controlled by various mechanisms, including transcriptional regulation, and post-translational activation by phosphorylation and protein-protein interactions which can regulate both the activity and localisation of this enzyme. To gain a better understanding of the regulatory mechanisms controlling SK1 activity and function we performed a yeast two-hybrid screen to identify SK1-interacting proteins. Using this approach we identified that SK1 interacts with subunit 7 (eta) of cytosolic chaperonin CCT (chaperonin containing t-complex polypeptide, also called TRiC for TCP-1 ring complex), a hexadecameric chaperonin that binds unfolded polypeptides and mediates their folding and release in an ATP-dependent manner. Further analysis of the SK1-CCTeta interaction demonstrated that other CCT/TRiC subunits also associated with SK1 in HEK293T cell lysates in an ATP-sensitive manner, suggesting that the intact, functional, multimeric CCT/TRiC complex associated with SK1. Furthermore, pulse-chase studies indicated that CCT/TRiC binds specifically to newly translated SK1. Finally, depletion of functional CCT/TRiC through the use of RNA interference in HeLa cells or temperature sensitive CCT yeast mutants reduced cellular SK1 activity. Thus, combined this data suggests that SK1 is a CCT/TRiC substrate, and that this chaperonin facilitates folding of newly translated SK1 into its mature active form.


Asunto(s)
Chaperoninas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Chaperonina con TCP-1 , Fibroblastos/metabolismo , Células HeLa , Humanos , Leucocitos/metabolismo , Lisofosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Conformación Proteica , Pliegue de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Activación Transcripcional , Transfección , Técnicas del Sistema de Dos Híbridos
17.
J Biol Chem ; 283(50): 34994-5002, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18852266

RESUMEN

Sphingosine kinase 1 (SK1) is an important regulator of cellular signaling that has been implicated in a broad range of cellular processes. Cell exposure to a wide array of growth factors, cytokines, and other cell agonists can result in a rapid and transient increase in SK activity via an activating phosphorylation. We have previously identified extracellular signal-regulated kinases 1 and 2 (ERK1/2) as the kinases responsible for the phosphorylation of human SK1 at Ser(225), but the corresponding phosphatase targeting this phosphorylation has remained undefined. Here, we provide data to support a role for protein phosphatase 2A (PP2A) in the deactivation of SK1 through dephosphorylation of phospho-Ser(225). The catalytic subunit of PP2A (PP2Ac) was found to interact with SK1 using both GST-pulldown and coimmunoprecipitation analyses. Coexpression of PP2Ac with SK1 resulted in reduced Ser(225) phosphorylation of SK1 in human embryonic kidney (HEK293) cells. In vitro phosphatase assays showed that PP2Ac dephosphorylated both recombinant SK1 and a phosphopeptide based on the phospho-Ser(225) region of SK1. Finally, both basal and tumor necrosis factor-alpha-stimulated cellular SK1 activity were regulated by molecular manipulation of PP2Ac activity. Thus, PP2A appears to function as an endogenous regulator of SK1 phosphorylation.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Silenciador del Gen , Glutatión Transferasa/metabolismo , Humanos , Músculo Esquelético/enzimología , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Proteína Fosfatasa 2/química , Estructura Terciaria de Proteína , Conejos , Serina/química , Fracciones Subcelulares/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
Biotechniques ; 45(2): 155-6, 158, 160 passim, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18687064

RESUMEN

Tetracycline-regulated expression systems have been widely used for inducible protein expression in cultured mammalian cells. With these systems, however, leakiness in expression of the target gene in the absence of the inducing agent is a frequent problem. Here we describe a novel approach to overcome this problem that involves the incorporation of AU-rich mRNA destabilizing elements (AREs) into the 3' untranslated regions of the tetracycline-inducible constructs. Using the inducible expression of sphingosine kinase 1 and 2 in HEK293 cells as model systems, we found this ARE approach to be remarkably successful in ablating expression of these proteins in the absence of doxycycline through decreasing stability of their mRNAs. We show that this undemanding and flexible process results in a substantial decrease in the leakiness of the tetracycline-inducible expression system while maintaining a high level of target protein expression following induction.


Asunto(s)
Doxiciclina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Mensajero/metabolismo , Regiones no Traducidas 3'/fisiología , Secuencia de Bases , Células Cultivadas , Humanos , Datos de Secuencia Molecular , Estabilidad del ARN
19.
J Biol Chem ; 283(15): 9606-14, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18263879

RESUMEN

Sphingosine 1-phosphate (S1P) has many important roles in mammalian cells, including contributing to the control of cell survival and proliferation. S1P is generated by sphingosine kinases (SKs), of which two mammalian isoforms have been identified (SK1 and SK2). To gain a better understanding of SK regulation, we have used a yeast two-hybrid screen to identify SK1-interacting proteins and established elongation factor 1A (eEF1A) as one such protein that associates with both SK1 and SK2. We show the direct interaction of eEF1A with the SKs in vitro, whereas the physiological relevance of this association was demonstrated by co-immunoprecipitation of the endogenous proteins from cell lysates. Although the canonical role of eEF1A resides in protein synthesis, it has also been implicated in other roles, including regulating the activity of some signaling enzymes. Thus, we examined the potential role of eEF1A in regulation of the SKs and show that eEF1A is able to directly increase the activity of SK1 and SK2 approximately 3-fold in vitro. Substrate kinetics demonstrated that eEF1A increased the catalytic rate of both SKs, while having no observable effect on substrate affinities of these enzymes for either ATP or sphingosine. Overexpression of eEF1A in quiescent Chinese hamster ovary cells increased cellular SK activity, whereas a small interfering RNA-mediated decrease in eEF1A levels in MCF7 cells substantially reduced cellular SK activity and S1P levels, supporting the in vivo physiological relevance of this interaction. Thus, this study has established a novel mechanism of regulation of both SK1 and SK2 that is mediated by their interaction with eEF1A.


Asunto(s)
Lisofosfolípidos/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal/fisiología , Esfingosina/análogos & derivados , Animales , Células CHO , Catálisis , Proliferación Celular , Supervivencia Celular/fisiología , Cricetinae , Cricetulus , Activación Enzimática/fisiología , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Lisofosfolípidos/genética , Factor 1 de Elongación Peptídica/antagonistas & inhibidores , Factor 1 de Elongación Peptídica/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Unión Proteica/fisiología , ARN Interferente Pequeño/genética , Esfingosina/genética , Esfingosina/metabolismo
20.
J Biol Chem ; 281(17): 11693-701, 2006 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16522638

RESUMEN

Sphingosine kinases catalyze the formation of sphingosine 1-phosphate, a bioactive lipid involved in many aspects of cellular regulation, including the fundamental biological processes of cell growth and survival. A diverse range of cell agonists induce activation of human sphingosine kinase 1 (hSK1) and, commonly, its translocation to the plasma membrane. Although the activation of hSK1 in response to at least some agonists occurs directly via its phosphorylation at Ser225 by ERK1/2, many aspects governing the regulation of this phosphorylation and subsequent translocation remain unknown. Here, in an attempt to understand some of these processes, we have examined the known interaction of hSK1 with calmodulin (CaM). By using a combination of limited proteolysis, peptide interaction analysis, and site-directed mutagenesis, we have identified that the CaM-binding site of hSK1 resides in the region spanned by residues 191-206. Specifically, Phe197 and Leu198 are critically involved in the interaction because a version of hSK1 incorporating mutations of both Phe197 --> Ala and Leu198 --> Gln failed to bind CaM. We have also shown for the first time that human sphingosine kinase 2 (hSK2) binds CaM, and does so via a CaM binding region that is conserved with hSK1 because comparable mutations in hSK2 also ablate CaM binding to this protein. By using the CaM-binding-deficient version of hSK1, we have begun to elucidate the role of CaM in hSK1 regulation by demonstrating that disruption of the CaM-binding site ablates agonist-induced translocation of hSK1 from the cytoplasm to the plasma membrane, while having no effect on hSK1 phosphorylation and catalytic activation.


Asunto(s)
Calmodulina/metabolismo , Membrana Celular/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Carcinógenos/farmacología , Células Cultivadas , Humanos , Riñón/enzimología , Lisofosfolípidos/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Unión Proteica , Transporte de Proteínas , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Acetato de Tetradecanoilforbol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...