Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(1): e14202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356406

RESUMEN

Drought, a widespread abiotic stressor, exerts a profound impact on agriculture, impeding germination and plant growth, and reducing crop yields. In the present investigation, the osmotolerant rhizobacteria Bacillus casamancensis strain MKS-6 and Bacillus sp. strain MRD-17 were assessed for their effects on molecular processes involved in mustard germination under osmotic stress conditions. Enhancement in germination was evidenced by improved germination percentages, plumule and radicle lengths, and seedling vigor upon rhizobacterial inoculation under no stress and osmotic stress conditions. Under osmotic stress, rhizobacteria stimulated the production of gibberellins and reserve hydrolytic enzymes (lipases, isocitrate lyase, and malate synthase), bolstering germination. Furthermore, these rhizobacteria influenced the plant hormones such as gibberellins and abscisic acid (ABA), as well as signalling pathways, thereby promoting germination under osmotic stress. Reduced proline and glycine betaine accumulation, and down-regulation of transcription factors BjDREB1_2 and BjDREB2 (linked to ABA-independent signalling) in rhizobacteria-inoculated seedlings indicated that bacterial treatment mitigated water deficit stress during germination, independently of these pathways. Hence, the advantageous attributes exhibited by these rhizobacterial strains can be effectively harnessed to alleviate drought-induced stress in mustard crops, potentially through the development of targeted bio-formulations.


Asunto(s)
Bacillus , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Germinación , Giberelinas/farmacología , Planta de la Mostaza/metabolismo , Presión Osmótica/fisiología , Semillas , Plantones/fisiología , Deshidratación
2.
Curr Microbiol ; 80(5): 169, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024688

RESUMEN

Due to global warming, increasing incidences of higher-than-normal temperatures have been observed, which adversely affect seed germination, crop growth, and productivity. Several reports are available on the effect of inoculation with rhizobacteria on plant growth and biochemical attributes; however, information on their influence on seed germination and plant stress levels is lacking. In the present study, under heat stress, we studied the effect of three thermotolerant rhizobacterial strains on mustard seed germination, seedling vigor, and plant growth. Effect of inoculation with the rhizobacterial strains on the plant stress levels, biochemical attributes and antioxidant activity was also determined. Under heat stress, inoculation with the rhizobacterial strains improved seed germination and seedling fresh weight and plumule length; while only Bacillus licheniformis SSA 61 inoculated plants showed better radicle length. There was a concomitant decrease in the plant ethylene levels in the inoculated treatments. Inoculated plants showed higher shoot fresh weight, however, Bacillus sp. MRD-17 inoculated plants only improved root growth. There was significant increase in most of the plant biochemical parameters and activities of antioxidant enzymes superoxide dismutase, catalase, and ascorbate peroxidase. Significant reduction in proline and total sugar content was noted in the inoculated treatments; while increase in the amino acid and phenolics content was observed. A further increase in the antioxidant enzyme activity was recorded in most of the inoculated treatments compared with no stress. Thus, our study indicated that thermotolerant rhizobacterial strains reduced plant stress levels; enhanced seed germination, seedling vigor, plant biomass, and thermotolerance of mustard.


Asunto(s)
Bacillus , Termotolerancia , Antioxidantes/farmacología , Planta de la Mostaza/metabolismo , Bacillus/metabolismo , Temperatura , Plantones
3.
J Fungi (Basel) ; 9(1)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675946

RESUMEN

Di-n-butyl phthalate (DBP) is one of the most extensively used plasticizers for providing elasticity to plastics. Being potentially harmful to humans, investigating eco-benign options for its rapid degradation is imperative. Microbe-mediated DBP mineralization is well-recorded, but studies on the pollutant's fungal catabolism remain scarce. Thus, the present investigation was undertaken to exploit the fungal strains from toxic sanitary landfill soil for the degradation of DBP. The most efficient isolate, SDBP4, identified on a molecular basis as Aspergillus flavus, was able to mineralize 99.34% dibutyl phthalate (100 mg L-1) within 15 days of incubation. It was found that the high production of esterases by the fungal strain was responsible for the degradation. The strain also exhibited the highest biomass (1615.33 mg L-1) and total soluble protein (261.73 µg mL-1) production amongst other isolates. The DBP degradation pathway scheme was elucidated with the help of GC-MS-based characterizations that revealed the formation of intermediate metabolites such as benzyl-butyl phthalate (BBP), dimethyl-phthalate (DMP), di-iso-butyl-phthalate (DIBP) and phthalic acid (PA). This is the first report of DBP mineralization assisted with A. flavus, using it as a sole carbon source. SDBP4 will be further formulated to develop an eco-benign product for the bioremediation of DBP-contaminated toxic sanitary landfill soils.

4.
Physiol Plant ; 174(2): e13676, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35316540

RESUMEN

Drought is a major abiotic stress that affects crop productivity. Endophytic bacteria have been found to alleviate the adverse effects of drought on plants. In the present study, we evaluated the effects of two endophytic bacteria Shewanella putrefaciens strain MCL-1 and Cronobacter dublinensis strain MKS-1 on pearl millet (Pennisetum glaucum (L.) R. Br.) under drought stress conditions. Pearl millet plants were grown under three water levels: field capacity (FC), mild drought stress (MD), and severe drought stress (SD). The effects of inoculation on plant growth, physiological attributes, phytohormone content, and drought stress-responsive genes were assessed. The inoculation of pearl millet seeds with endophytes significantly improved shoot and root dry weight and root architecture of plants grown under FC and drought stress conditions. There was a significant increase in relative water content and proline accumulation in the inoculated plants. Among the phytohormones analyzed, the content of ABA and IAA was significantly higher in endophyte-treated plants under all moisture regimes than in uninoculated plants. C. dublinensis-inoculated plants had higher GA content than uninoculated plants under all moisture regimes. The expression level of genes involved in phytohormone biosynthesis (SbNCED, SbGA20oX, and SbYUC) and coding drought-responsive transcription factors (SbAP2, SbSNAC1 and PgDREB2A) was significantly higher under SD in endophyte-inoculated plants than in uninoculated plants. Thus, these endophytic bacteria presumably enhanced the tolerance of pearl millet to drought stress by modulating root growth, plant hormones, physiology and the expression of genes involved in drought tolerance.


Asunto(s)
Pennisetum , Shewanella putrefaciens , Cronobacter , Sequías , Hormonas/metabolismo , Hormonas/farmacología , Pennisetum/genética , Pennisetum/metabolismo , Pennisetum/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Shewanella putrefaciens/metabolismo , Estrés Fisiológico/genética , Agua/metabolismo
5.
J Fungi (Basel) ; 7(7)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34356950

RESUMEN

Biochar and arbuscular mycorrhizal fungi (AMF) can promote plant growth, improve soil properties, and maintain microbial activity. The effects of biochar and AMF on plant growth, root morphological traits, physiological properties, and soil enzymatic activities were studied in spinach (Spinacia oleracea L.). A pot experiment was conducted to evaluate the effect of biochar and AMF on the growth of spinach. Four treatments, a T1 control (soil without biochar), T2 biochar alone, T3 AMF alone, and T4 biochar and AMF together, were arranged in a randomized complete block design with five replications. The biochar alone had a positive effect on the growth of spinach, root morphological traits, physiological properties, and soil enzymatic activities. It significantly increased the plant growth parameters, such as the shoot length, leaf number, leaf length, leaf width, shoot fresh weight, and shoot dry weight. The root morphological traits, plant physiological attributes, and soil enzymatic activities were significantly enhanced with the biochar alone compared with the control. However, the combination of biochar and AMF had a greater impact on the increase in plant growth, root morphological traits, physiological properties, and soil enzymatic activities compared with the other treatments. The results suggested that the combined biochar and AMF led to the highest levels of spinach plant growth, microbial biomass, and soil enzymatic activity.

6.
J Invertebr Pathol ; 183: 107562, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33652013

RESUMEN

Host plays an important role in influencing virulence of a pathogen and efficacy of a biopesticide. The present study was aimed to characterize the possible factors present in Spodoptera litura that influenced pathogenecity of orally ingested S. marcescens strains, differing in their virulence. Fifth instar larvae of S. litura responded differently as challenged by two Serratia marcescens strains, SEN (virulent strain, LC50 7.02 103 cfu/ml) and ICC-4 (non-virulent strain, LC50 1.19 1012 cfu/ml). Considerable increase in activity of lytic enzymes protease and phospholipase was recorded in the gut and hemolymph of larvae fed on diet supplemented with S. marcescens strain ICC-4 as compared to the larvae treated with S. marcescens strain SEN. However, a significant up-regulation of antioxidative enzymes SOD (in foregut and midgut), CAT (in the midgut) and GST (in the foregut and hemolymph) was recorded in larvae fed on diet treated with the virulent S. marcescens strain SEN in comparison to larvae fed on diet treated with the non-virulent S. marcescens strain ICC-4. Activity of defense related enzymes lysozyme and phenoloxidase activity were also higher in the hemolymph of larvae fed with diet treated with S. marcescens strain SEN as compared to hemolymph of S. marcescens strain ICC-4 treated larvae. More number of over-expressed proteins was observed in the gut and hemolymph of S. marcescens strains ICC-4 and SEN treated larvae, respectively. Identification of the selected differentially expressed proteins indicated induction of proteins involved in insect innate immune response (Immunoglobulin I-set domain, Apolipophorin III, leucine rich repeat and Titin) in S. marcescens strain SEN treated larvae. Over-expression of two proteins, actin related protein and mt DNA helicase, were noted in S. marcescens treated larvae with very high levels observed in the non-virulent strain. Up-regulation of homeobox protein was noted only in S. marcescens strain ICC-4 challenged larvae. This study indicated that ingestion of non-virulent S. marcescens strain ICC-4 induced strong immune response in insect gut while there was weak response to the virulent S. marcescens strain SEN which probably resulted in difference in their virulence.


Asunto(s)
Agentes de Control Biológico/farmacología , Serratia marcescens/fisiología , Serratia marcescens/patogenicidad , Spodoptera/virología , Animales , Hemolinfa/virología , Larva/crecimiento & desarrollo , Larva/virología , Spodoptera/crecimiento & desarrollo , Virulencia
7.
Physiol Plant ; 172(4): 1880-1893, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33728663

RESUMEN

In the present investigation, the role of rhizobacteria in alleviating the deleterious effects of drought on mustard was assessed. The plants were exposed to short-term water shortages, during the vegetative and reproductive growth stages. Drought stress in both stages had a negative effect on growth, physiological, and biochemical parameters of mustard. Both the root and shoot biomass were significantly reduced in plants exposed to drought, but rhizobacterial inoculation resulted in better plant biomass than uninoculated plants. The ameliorative effects of inoculation were also indicated by improved relative water content, membrane stability index, total chlorophyll content, and photosynthetic parameters. Similarly, inoculation resulted in enhanced activity of antioxidative enzymes superoxide dismutase (SOD), ascorbate peroxidase, and catalase in both stages of growth which possibly increased stress tolerance by maintaining reactive oxygen species (ROS) homeostasis. There was a significant reduction in the accumulation of H2 O2 , proline and total soluble sugar in rhizobacteria treated plants under drought, suggesting that the treated plants did not encounter much stress and could maintain better plant health than uninoculated plants. Expression analysis of the BjP5CSB and BjFeSOD genes was conducted during both the growth stages. Expression of the BjP5CSB gene was significantly down-regulated in inoculated plants under drought, while BjFeSOD gene transcript levels were upregulated. The vegetative stage was more responsive to rhizobacterial inoculations than the reproductive stage under drought. Principal component analysis indicated a differential response by the two growth stages to inoculation. Hence, results indicate that these rhizobacteria reduce the negative impacts of drought in mustard by maintaining ROS homeostasis.


Asunto(s)
Sequías , Planta de la Mostaza , Antioxidantes , Homeostasis , Especies Reactivas de Oxígeno , Estrés Fisiológico
8.
Microbiol Resour Announc ; 9(20)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409538

RESUMEN

Azotobacter chroococcum strain W5 (MTCC 25045) is an effective diazotrophic bacterium with plant growth-promoting traits. Here, we report the draft genome assembly of this biologically and agronomically evaluated A. chroococcum strain. The genome assembly in 55 contigs is 4,617,864 bp long, with a G+C content of 66.83%.

9.
Plant Physiol Biochem ; 143: 19-28, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31476528

RESUMEN

Response of drought susceptible (DS) genotype Pusa Karishma LES-39 and drought tolerant (DT) mustard genotype NPJ-124, to rhizobacterial inoculation under water deficit stress, was compared in the present study to determine the influence of inoculants on biochemical and physiological attributes of these two different genotypes. Inoculation was observed to improve root and shoot dry weight in both the genotypes, although better results were observed in the DS genotype. There was variation in the response of the two genotypes to rhizobacterial inoculation, under water deficit stress. Significant improvement in most of the physiological and biochemical parameters including antioxidative enzyme activities of the DS genotype; with concomitant decrease in starch content, accumulation of H2O2 and lipid peroxidation upon inoculation of rhizobacteria was observed. In contrast, there was improvement in only few physiological and biochemical parameters in the DT genotype in response to inoculation with rhizobacteria. There was significant increase in catalase enzyme activity along with concomitant decrease in lipid peroxidation. Thus, drought susceptibility of the mustard genotypes, NPJ-124 and Pusa Karishma LES-39, determined their physiological, biochemical and antioxidative responses to rhizobacterial inoculation under water deficit stress. Expression of drought stress responsive genes belonging to ABA-dependent (RD20 and RD26) and ABA-independent (DREB2 and DREB1-2) pathways was studied in the DS genotype. Expression of DREB2 and DREB1-2 genes was considerably enhanced due to inoculation under water deficit stress; indicating that in Bacillus-mediated priming for drought stress tolerance, in this genotype, ABA-independent pathway probably played key role in enhancing tolerance to drought stress.


Asunto(s)
Antioxidantes/metabolismo , Sequías , Planta de la Mostaza/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genotipo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/genética , Peroxidación de Lípido/fisiología , Planta de la Mostaza/genética , Oxidación-Reducción
10.
Crit Rev Food Sci Nutr ; 59(9): 1498-1513, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29336595

RESUMEN

Fungal diseases result in significant losses of fruits and vegetables during handling, transportation and storage. At present, post-production fungal spoilage is predominantly controlled by using synthetic fungicides. Under the global climate change scenario and with the need for sustainable agriculture, biological control methods of fungal diseases, using antagonistic microorganisms, are emerging as ecofriendly alternatives to the use of fungicides. The potential of microbial antagonists, isolated from a diversity of natural habitats, for postharvest disease suppression has been investigated. Postharvest biocontrol systems involve tripartite interaction between microbial antagonists, the pathogen and the host, affected by environmental conditions. Several modes for fungistatic activities of microbial antagonists have been suggested, including competition for nutrients and space, mycoparasitism, secretion of antifungal antibiotics and volatile metabolites and induction of host resistance. Postharvest application of microbial antagonists is more successful for efficient disease control in comparison to pre-harvest application. Attempts have also been made to improve the overall efficacy of antagonists by combining them with different physical and chemical substances and methods. Globally, many microbe-based biocontrol products have been developed and registered for commercial use. The present review provides a brief overview on the use of microbial antagonists as postharvest biocontrol agents and summarises information on their isolation, mechanisms of action, application methods, efficacy enhancement, product formulation and commercialisation.


Asunto(s)
Antibiosis , Conservación de Alimentos/métodos , Frutas/microbiología , Micosis/prevención & control , Enfermedades de las Plantas/prevención & control
11.
Microb Ecol ; 77(3): 676-688, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30209586

RESUMEN

Genetic and functional diversity of osmotolerant bacterial endophytes colonizing the root, stem, and leaf tissues of pearl millet genotypes differing in their drought susceptibility was assessed. Two genotypes of pearl millet, viz., the drought tolerant genotype TT-1 and the drought susceptible genotype PPMI-69, were used in the present study. Diazotrophs were found to be the predominant colonizers, followed by the Gram positive bacteria in most of the tissues of both the genotypes. Higher proportion of bacterial endophytes obtained from the drought tolerant genotype was found to be osmotolerant. Results of 16S rRNA gene-ARDRA analysis grouped 50 of the highly osmotolerant isolates into 16 clusters, out of which nine clusters had only one isolate each, indicating their uniqueness. One cluster had 21 isolates and remaining clusters were represented by isolates ranging from two to four. The representative isolates from each cluster were identified, and Bacillus was found to be the most prevalent osmotolerant genera with many different species. Other endophytic bacteria belonged to Pseudomonas sp., Stenotrophomonas sp., and Macrococcus caseolyticus. High phylogenetic diversity was observed in the roots of the drought tolerant genotype while different tissues of the drought susceptible genotype showed less diversity. Isolates of Bacillus axarquiensis were present in all the tissues of both the genotypes of pearl millet. However, most of the other endophytic bacteria showed tissue/genotype specificity. With the exception of B. axarquiensis and B. thuringiensis, rest all the species of Bacillus were found colonizing only the drought-tolerant genotype; while M. caseolyticus colonized all the tissues of only the drought susceptible genotype. There was high incidence of IAA producers and low incidence of ACC deaminase producers among the isolates from the root tissues of the drought-tolerant genotype while reverse was the case for the drought-susceptible genotype. Thus, host played an important role in the selection of endophytes based on both phylogenetic and functional traits.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Endófitos/aislamiento & purificación , Pennisetum/microbiología , Bacterias/clasificación , Bacterias/genética , Sequías , Endófitos/clasificación , Endófitos/genética , Genotipo , Pennisetum/genética , Pennisetum/fisiología , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología
12.
Genome Announc ; 5(40)2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28982991

RESUMEN

Pseudomonas stutzeri strain KMS 55 (MTCC 12703) is an isolate from the root tissues of rice (Oryza sativa L.) that displays a high biological nitrogen fixation ability. Here, we report the complete genome sequence of this strain, which contains 4,637,820 bp, 4,289 protein-coding genes, 5,006 promoter sequences, 62 tRNAs, a single copy of 5S-16S-23S rRNA, and a genome average GC content of 51.18%. Analysis of the ~4.64-Mb genome sequence will give support to increased understanding of the genetic determinants of host range, endophytic colonization behavior, endophytic nitrogen fixation, and other plant-beneficial roles of Pseudomonas stutzeri.

13.
Appl Environ Microbiol ; 83(15)2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28550063

RESUMEN

In our endeavor to improve the nitrogen fixation efficiency of a soil diazotroph that would be unaffected by synthetic nitrogenous fertilizers, we have deleted a part of the negative regulatory gene nifL and constitutively expressed the positive regulatory gene nifA in the chromosome of Azotobacter chroococcum CBD15, a strain isolated from the local field soil. No antibiotic resistance gene or other foreign gene was present in the chromosome of the engineered strain. Wheat seeds inoculated with this engineered strain, which we have named Azotobacter chroococcum HKD15, were tested for 3 years in pots and 1 year in the field. The yield of wheat was enhanced by ∼60% due to inoculation of seeds by A. chroococcum HKD15 in the absence of any urea application. Ammonium only marginally affected acetylene reduction by the engineered Azotobacter strain. When urea was also applied, the same wheat yield could be sustained by using seeds inoculated with A. chroococcum HKD15 and using ∼85 kg less urea (∼40 kg less nitrogen) than the usual ∼257 kg urea (∼120 kg nitrogen) per hectare. Wheat plants arising from the seeds inoculated with the engineered Azotobacter strain exhibited far superior overall performance, had much higher dry weight and nitrogen content, and assimilated molecular 15N much better. A nitrogen balance experiment also revealed much higher total nitrogen content. Indole-3-acetic acid (IAA) production by the wild type and that by the engineered strain were about the same. Inoculation of the wheat seeds with A. chroococcum HKD15 did not adversely affect the microbial population in the field rhizosphere soil.IMPORTANCE Application of synthetic nitrogenous fertilizers is a standard agricultural practice to augment crop yield. Plants, however, utilize only a fraction of the applied fertilizers, while the unutilized fertilizers cause grave environmental problems. Wild-type soil diazotrophic microorganisms cannot replace synthetic nitrogenous fertilizers, as these reduce atmospheric nitrogen very inefficiently and almost none at all in the presence of added nitrogenous fertilizers. If the nitrogen-fixing ability of soil diazotrophs could be improved and sustained even in the presence of synthetic nitrogenous fertilizers, then a mixture of the bacteria and a reduced quantity of chemical nitrogenous fertilizers could be employed to obtain the same grain yield but at a much-reduced environmental cost. The engineered Azotobacter strain that we have reported here has considerably enhanced nitrogen fixation and excretion abilities and can replace ∼85 kg of urea per hectare but sustain the same wheat yield, if the seeds are inoculated with it before sowing.

14.
J Invertebr Pathol ; 143: 115-123, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27993620

RESUMEN

Two Serratia marcescens strains, SEN and ICC-4, isolated from diseased insect cadavers were observed to differ considerably in their virulence towards Spodoptera litura. The present study was aimed to characterize the possible virulence factors present in the virulent Serratia marcescens strain SEN. Both the S. marcescens strains were evaluated for the presence of various lytic enzymes such as chitinase, lipase, protease and phospholipase. The virulent S. marcescens strain SEN was observed to possess considerably higher activity of chitinase and protease enzymes; activity of phospholipase enzyme was also higher. Although, all the three toxin genes shlA, phlA and swr could be detected in both the S. marcescens strains, there was a higher expression of these genes in the virulent strain SEN. S. marcescens strain ICC-4 showed greater reduction in overall growth yield in the post-exponential phase in the presence of midgut juice and hemolymph of S. litura larvae, as compared to S. marcescens strain SEN. Proliferation of the S. marcescens strain SEN was also considerably higher in foregut, midgut and hemolymph of S. litura larvae, as compared to strain ICC-4. Peritrophic membrane treated with broth culture of the S. marcescens strain SEN showed higher damage as compared to strain ICC-4. The peritrophic membrane of larvae fed on diet treated with the virulent strain showed considerable damage while the peritrophic membrane of larvae fed on diet treated with the non-virulent strain showed no damage. This is the first report documenting the fate of ingested S. marcescens in S. litura gut and the relative expression of toxin genes from two S. marcescens strains differing in their virulence towards S. litura.


Asunto(s)
Infecciones por Serratia/veterinaria , Serratia marcescens/patogenicidad , Spodoptera/microbiología , Virulencia/fisiología , Animales , Perfilación de la Expresión Génica , Reacción en Cadena de la Polimerasa , Transcriptoma , Factores de Virulencia/biosíntesis
15.
J Nanosci Nanotechnol ; 16(1): 643-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27398501

RESUMEN

Nanohexaconazole is a highly efficient fungicide against Rhizoctonia solani. Nanoparticles are alleged to adversely affect the non-target organisms. In order to evaluate such concern, the present study was carried out to investigate the effect of nanohexaconazole and its commercial formulation on sensitive nitrogen fixing blue green algae (BGA) and bacteria. Various activities of algae and bacteria namely growth, N-fixation, N-assimilation, Indole acetic acid (IAA) production and phosphate solubilization were differently affected in the presence of hexaconazole. Although, there was stimulatory to slightly inhibitory effect on the growth measurable parameters of the organisms studied at the recommended dose of nanohexaconazole, but its higher dose was inhibitory to all these microorganisms. On the other hand, the recommended as well as higher dose of commercial hexaconazole showed much severe inhibition of growth and metabolic activity of these organisms as compared to the nano preparation. The uses of nanohexazconazole instead of hexaconazole as a fungicide will not only help to control various fungal pathogens but also sustain the growth and activity of these beneficial microorganisms for sustaining soil fertility and productivity.


Asunto(s)
Antifúngicos/farmacología , Cianobacterias/metabolismo , Ácidos Indolacéticos/metabolismo , Nanopartículas , Fijación del Nitrógeno/efectos de los fármacos , Triazoles/farmacología , Antifúngicos/química , Triazoles/química
16.
Curr Microbiol ; 70(4): 610-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25561404

RESUMEN

Bacillus licheniformis strain SSA 61, originally isolated from Sambhar salt lake, was observed to grow even in the presence of 25 % salt stress. Osmoadaptive mechanisms of this halotolerant B. licheniformis strain SSA 61, for long-term survival and growth under salt stress, were determined. Proline was the preferentially accumulated compatible osmolyte. There was also increased accumulation of antioxidants ascorbic acid and glutathione. Among the different antioxidative enzymes assayed, superoxide dismutase played the most crucial role in defense against salt-induced stress in the organism. Adaptation to stress by the organism involved modulation of cellular physiology at various levels. There was enhanced expression of known proteins playing essential roles in stress adaptation, such as chaperones DnaK and GroEL, and general stress protein YfkM and polynucleotide phosphorylase/polyadenylase. Proteins involved in amino acid biosynthetic pathway, ribosome structure, and peptide elongation were also overexpressed. Salt stress-induced modulation of expression of enzymes involved in carbon metabolism was observed. There was up-regulation of a number of enzymes involved in generation of NADH and NADPH, indicating increased cellular demand for both energy and reducing power.


Asunto(s)
Adaptación Fisiológica , Bacillus/efectos de los fármacos , Bacillus/fisiología , Presión Osmótica , Sales (Química)/metabolismo , Estrés Fisiológico , Ácido Ascórbico/análisis , Perfilación de la Expresión Génica , Glutatión/análisis , Lagos , Viabilidad Microbiana/efectos de los fármacos , Prolina/análisis , Superóxido Dismutasa/metabolismo
17.
Curr Microbiol ; 69(2): 183-91, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24682261

RESUMEN

Bacteria capable of degrading the sulfonated azo dye Red HE7B were isolated from textile mill effluent contaminated soil. The most efficient isolate was identified as Bacillus sp. Azo1 and the isolate could successfully decolorize up to 89% of the dye. The decolorized cultural extract analyzed by HPLC confirmed degradation. Enzymatic analysis showed twofold and fourfold increase in the activity of azoreductase and laccase enzymes, respectively, indicating involvement of both reductive and oxidative enzymes in biodegradation of Red HE7B. Degraded products which were identified by GC/MS analysis included various metabolites like 8-nitroso 1-naphthol, 2-diazonium naphthalene. Mono azo dye intermediate was initially generated from the parent molecule. This mono azo dye was further degraded by the organism, into additional products, depending on the site of cleavage of R-N=N-R molecule. Based on the degradation products identified, three different pathways have been proposed. The mechanism of degradation in two of these pathways is different from that of the previously reported pathway for azo dye degradation. This is the first report of a microbial isolate following multiple pathways for azo dye degradation. Azo dye Red HE7B was observed to be phytotoxic, leading to decrease in root development, shoot length and seedling fresh weight. However, after biotreatment the resulting degradation products were non-phytotoxic.


Asunto(s)
Compuestos Azo/metabolismo , Bacillus/metabolismo , Redes y Vías Metabólicas , Contaminantes del Suelo/metabolismo , Bacillus/aislamiento & purificación , Biotransformación , Cromatografía de Gases y Espectrometría de Masas , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
18.
Bull Environ Contam Toxicol ; 90(3): 351-6, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23262986

RESUMEN

The effects of lindane on growth and plant growth-promoting traits of two lindane-degrading Azotobacter chroococcum strains (JL 15 and JL 104) were determined. The potential of both A. chroococcum strains to degrade lindane was also determined. Lower concentrations of lindane had a stimulatory effect, and higher concentrations generally had an inhibitory effect on growth and plant growth-promoting activities. A high percentage (>90%) of lindane was degraded by both strains at a lindane concentration of 10 ppm. Lindane at 1,000 ppm decreased seed germination and reduced seedling fresh weight. However, the possible degradation products for a starting lindane concentration of 10 ppm was found to be non-phytotoxic. Toxicity studies with larvae of Spilarctia obliqua resulted in an LC50 estimate of 3.41 ppm for lindane solutions into which leaf discs were dipped. No toxicity was observed for possible degradation products.


Asunto(s)
Azotobacter/efectos de los fármacos , Productos Agrícolas/efectos de los fármacos , Hexaclorociclohexano/toxicidad , Mariposas Nocturnas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Animales , Azotobacter/crecimiento & desarrollo , Biodegradación Ambiental , Productos Agrícolas/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Germinación/efectos de los fármacos , Hexaclorociclohexano/química , Larva/efectos de los fármacos , Dosificación Letal Mediana , Mariposas Nocturnas/crecimiento & desarrollo , Fijación del Nitrógeno/efectos de los fármacos , Análisis de Regresión , Plantones/efectos de los fármacos , Semillas/efectos de los fármacos , Contaminantes del Suelo/química
19.
J Basic Microbiol ; 50(3): 266-73, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20473953

RESUMEN

Ten strains of Azotobacter chroococcum were studied for their ability to invade the endorhizosphere of wheat. Strain W-5 exhibited ability to invade endorhizosphere as shown in the microscopic observations. This strain was compared with the strain OA-3 which did not invade the endorhizosphere zone. Strain W-5 showed higher production of cellulase and pectinase than OA-3. Both the strains induced defense enzymes in the host plant. However, induction of peroxidase and phenylalanine ammonia lyase activities (PAL) was higher in OA-3 than W-5. Quantitative differences in flavonoid like compounds obtained from root extracts and root exudates of plants inoculated with these strains were observed.


Asunto(s)
Azotobacter/crecimiento & desarrollo , Azotobacter/metabolismo , Raíces de Plantas/microbiología , Triticum/microbiología , Azotobacter/enzimología , Proteínas Bacterianas/metabolismo , Extractos Celulares/química , Celulasa/metabolismo , Flavonoides/análisis , Peroxidasa/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Poligalacturonasa/metabolismo
20.
J Environ Sci Health B ; 45(1): 58-66, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20390932

RESUMEN

This study was undertaken to investigate the potential of Azotobacter chroococcum for degrading lindane. Ten cultures were screened for lindane degradation by a chloride estimation method and the best A. chroococcum culture JL 102 was selected for further studies. This strain was subjected to a lindane-tolerance experiment and based on the results obtained, 10 and 100 ppm of lindane were selected to study the potential of the A. chroococcum strain for ex situ and in situ biodegradation of lindane. The organism was grown in 2 different media viz. Jensen's broth and soil extract broth and ex situ lindane degradation was studied for a period of 6 days. Maximum degradation of lindane was recorded at 10 ppm concentration. The degradation was higher in Jensen's medium, compared to the soil extract broth. A pot culture experiment was conducted using both sterile and non-sterile soils supplemented with 10 ppm lindane to study in situ degradation potential of this strain for a period of 8 weeks. In both the conditions (sterile and non-sterile), the organism exhibited increased degradation over the days with maximum degradation observed on the 8th week of incubation. It could degrade most of the applied lindane by the end of the study period.


Asunto(s)
Azotobacter/metabolismo , Hexaclorociclohexano/metabolismo , Insecticidas/metabolismo , Microbiología del Suelo , Biodegradación Ambiental , Relación Dosis-Respuesta a Droga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...