Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Front Artif Intell ; 7: 1304483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006802

RESUMEN

Background and novelty: When RT-PCR is ineffective in early diagnosis and understanding of COVID-19 severity, Computed Tomography (CT) scans are needed for COVID diagnosis, especially in patients having high ground-glass opacities, consolidations, and crazy paving. Radiologists find the manual method for lesion detection in CT very challenging and tedious. Previously solo deep learning (SDL) was tried but they had low to moderate-level performance. This study presents two new cloud-based quantized deep learning UNet3+ hybrid (HDL) models, which incorporated full-scale skip connections to enhance and improve the detections. Methodology: Annotations from expert radiologists were used to train one SDL (UNet3+), and two HDL models, namely, VGG-UNet3+ and ResNet-UNet3+. For accuracy, 5-fold cross-validation protocols, training on 3,500 CT scans, and testing on unseen 500 CT scans were adopted in the cloud framework. Two kinds of loss functions were used: Dice Similarity (DS) and binary cross-entropy (BCE). Performance was evaluated using (i) Area error, (ii) DS, (iii) Jaccard Index, (iii) Bland-Altman, and (iv) Correlation plots. Results: Among the two HDL models, ResNet-UNet3+ was superior to UNet3+ by 17 and 10% for Dice and BCE loss. The models were further compressed using quantization showing a percentage size reduction of 66.76, 36.64, and 46.23%, respectively, for UNet3+, VGG-UNet3+, and ResNet-UNet3+. Its stability and reliability were proved by statistical tests such as the Mann-Whitney, Paired t-Test, Wilcoxon test, and Friedman test all of which had a p < 0.001. Conclusion: Full-scale skip connections of UNet3+ with VGG and ResNet in HDL framework proved the hypothesis showing powerful results improving the detection accuracy of COVID-19.

2.
Nat Commun ; 15(1): 4772, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858384

RESUMEN

The underlying mechanisms of atherosclerosis, the second leading cause of death among Werner syndrome (WS) patients, are not fully understood. Here, we establish an in vitro co-culture system using macrophages (iMφs), vascular endothelial cells (iVECs), and vascular smooth muscle cells (iVSMCs) derived from induced pluripotent stem cells. In co-culture, WS-iMφs induces endothelial dysfunction in WS-iVECs and characteristics of the synthetic phenotype in WS-iVSMCs. Transcriptomics and open chromatin analysis reveal accelerated activation of type I interferon signaling and reduced chromatin accessibility of several transcriptional binding sites required for cellular homeostasis in WS-iMφs. Furthermore, the H3K9me3 levels show an inverse correlation with retrotransposable elements, and retrotransposable element-derived double-stranded RNA activates the DExH-box helicase 58 (DHX58)-dependent cytoplasmic RNA sensing pathway in WS-iMφs. Conversely, silencing type I interferon signaling in WS-iMφs rescues cell proliferation and suppresses cellular senescence and inflammation. These findings suggest that Mφ-specific inhibition of type I interferon signaling could be targeted to treat atherosclerosis in WS patients.


Asunto(s)
Aterosclerosis , Inflamación , Interferón Tipo I , Macrófagos , Retroelementos , Síndrome de Werner , Interferón Tipo I/metabolismo , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/inmunología , Aterosclerosis/genética , Aterosclerosis/patología , Macrófagos/metabolismo , Macrófagos/inmunología , Retroelementos/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Células Madre Pluripotentes Inducidas/metabolismo , Transducción de Señal , Técnicas de Cocultivo , Miocitos del Músculo Liso/metabolismo , Células Endoteliales/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Senescencia Celular , Proliferación Celular
3.
EBioMedicine ; 105: 105187, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38861870

RESUMEN

BACKGROUND: Decreased levels of circulating ethanolamine plasmalogens [PE(P)], and a concurrent increase in phosphatidylethanolamine (PE) are consistently reported in various cardiometabolic conditions. Here we devised, a plasmalogen score (Pls Score) that mirrors a metabolic signal that encompasses the levels of PE(P) and PE and captures the natural variation in circulating plasmalogens and perturbations in their metabolism associated with disease, diet, and lifestyle. METHODS: We utilised, plasma lipidomes from the Australian Obesity, Diabetes and Lifestyle study (AusDiab; n = 10,339, 55% women) a nationwide cohort, to devise the Pls Score and validated this in the Busselton Health Study (BHS; n = 4,492, 56% women, serum lipidome) and in a placebo-controlled crossover trial involving Shark Liver Oil (SLO) supplementation (n = 10, 100% men). We examined the association of the Pls Score with cardiometabolic risk factors, type 2 diabetes mellitus (T2DM), cardiovascular disease and all-cause mortality (over 17 years). FINDINGS: In a model, adjusted for age, sex and BMI, individuals in the top quintile of the Pls Score (Q5) relative to Q1 had an OR of 0.31 (95% CI 0.21-0.43), 0.39 (95% CI 0.25-0.61) and 0.42 (95% CI 0.30-0.57) for prevalent T2DM, incident T2DM and prevalent cardiovascular disease respectively, and a 34% lower mortality risk (HR = 0.66; 95% CI 0.56-0.78). Significant associations between diet and lifestyle habits and Pls Score exist and these were validated through dietary supplementation of SLO that resulted in a marked change in the Pls Score. INTERPRETATION: The Pls Score as a measure that captures the natural variation in circulating plasmalogens, was not only inversely related to cardiometabolic risk and all-cause mortality but also associate with diet and lifestyle. Our results support the potential utility of the Pls Score as a biomarker for metabolic health and its responsiveness to dietary interventions. Further research is warranted to explore the underlying mechanisms and optimise the practical implementation of the Pls Score in clinical and population settings. FUNDING: National Health and Medical Research Council (NHMRC grant 233200), National Health and Medical Research Council of Australia (Project grant APP1101320), Health Promotion Foundation of Western Australia, and National Health and Medical Research Council of Australia Senior Research Fellowship (#1042095).


Asunto(s)
Biomarcadores , Plasmalógenos , Humanos , Plasmalógenos/sangre , Plasmalógenos/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/metabolismo , Australia/epidemiología , Estudios Cruzados , Adulto , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/prevención & control , Anciano , Fosfatidiletanolaminas/metabolismo , Estilo de Vida , Factores de Riesgo Cardiometabólico
4.
Dev Cell ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38781975

RESUMEN

The transcription factor EHF is highly expressed in the lactating mammary gland, but its role in mammary development and tumorigenesis is not fully understood. Utilizing a mouse model of Ehf deletion, herein, we demonstrate that loss of Ehf impairs mammary lobuloalveolar differentiation at late pregnancy, indicated by significantly reduced levels of milk genes and milk lipids, fewer differentiated alveolar cells, and an accumulation of alveolar progenitor cells. Further, deletion of Ehf increased proliferative capacity and attenuated prolactin-induced alveolar differentiation in mammary organoids. Ehf deletion also increased tumor incidence in the MMTV-PyMT mammary tumor model and increased the proliferative capacity of mammary tumor organoids, while low EHF expression was associated with higher tumor grade and poorer outcome in luminal A and basal human breast cancers. Collectively, these findings establish EHF as a non-redundant regulator of mammary alveolar differentiation and a putative suppressor of mammary tumorigenesis.

5.
Int J Cardiovasc Imaging ; 40(6): 1283-1303, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678144

RESUMEN

The quantification of carotid plaque has been routinely used to predict cardiovascular risk in cardiovascular disease (CVD) and coronary artery disease (CAD). To determine how well carotid plaque features predict the likelihood of CAD and cardiovascular (CV) events using deep learning (DL) and compare against the machine learning (ML) paradigm. The participants in this study consisted of 459 individuals who had undergone coronary angiography, contrast-enhanced ultrasonography, and focused carotid B-mode ultrasound. Each patient was tracked for thirty days. The measurements on these patients consisted of maximum plaque height (MPH), total plaque area (TPA), carotid intima-media thickness (cIMT), and intraplaque neovascularization (IPN). CAD risk and CV event stratification were performed by applying eight types of DL-based models. Univariate and multivariate analysis was also conducted to predict the most significant risk predictors. The DL's model effectiveness was evaluated by the area-under-the-curve measurement while the CV event prediction was evaluated using the Cox proportional hazard model (CPHM) and compared against the DL-based concordance index (c-index). IPN showed a substantial ability to predict CV events (p < 0.0001). The best DL system improved by 21% (0.929 vs. 0.762) over the best ML system. DL-based CV event prediction showed a ~ 17% increase in DL-based c-index compared to the CPHM (0.86 vs. 0.73). CAD and CV incidents were linked to IPN and carotid imaging characteristics. For survival analysis and CAD prediction, the DL-based system performs superior to ML-based models.


Asunto(s)
Enfermedades de las Arterias Carótidas , Grosor Intima-Media Carotídeo , Enfermedad de la Arteria Coronaria , Aprendizaje Profundo , Factores de Riesgo de Enfermedad Cardiaca , Placa Aterosclerótica , Valor Predictivo de las Pruebas , Humanos , Medición de Riesgo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/mortalidad , Enfermedades de las Arterias Carótidas/complicaciones , Pronóstico , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/mortalidad , Factores de Tiempo , Canadá/epidemiología , Angiografía Coronaria , Arterias Carótidas/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador , Factores de Riesgo , Técnicas de Apoyo para la Decisión
6.
Nat Cell Biol ; 26(4): 645-659, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589531

RESUMEN

The cellular lipidome comprises thousands of unique lipid species. Here, using mass spectrometry-based targeted lipidomics, we characterize the lipid landscape of human and mouse immune cells ( www.cellularlipidatlas.com ). Using this resource, we show that immune cells have unique lipidomic signatures and that processes such as activation, maturation and development impact immune cell lipid composition. To demonstrate the potential of this resource to provide insights into immune cell biology, we determine how a cell-specific lipid trait-differences in the abundance of polyunsaturated fatty acid-containing glycerophospholipids (PUFA-PLs)-influences immune cell biology. First, we show that differences in PUFA-PL content underpin the differential susceptibility of immune cells to ferroptosis. Second, we show that low PUFA-PL content promotes resistance to ferroptosis in activated neutrophils. In summary, we show that the lipid landscape is a defining feature of immune cell identity and that cell-specific lipid phenotypes underpin aspects of immune cell physiology.


Asunto(s)
Ferroptosis , Humanos , Animales , Ratones , Ácidos Grasos Insaturados
7.
Artículo en Inglés | MEDLINE | ID: mdl-38644712

RESUMEN

BACKGROUND: Diseases are medical situations that are allied with specific signs and symptoms. A disease may be instigated by internal dysfunction or external factors like pathogens. Cerebrovascular disease can progress from diverse causes, comprising thrombosis, atherosclerosis, cerebral venous thrombosis, or embolic arterial blood clot. OBJECTIVE: In this paper, authors have proposed a robust framework for the detection of cerebrovascular diseases employing two different proposals which were validated by use of other dataset. METHODS: In proposed model 1, the Discrete Fourier transform is used for the fusion of CT and MR images which was classified them using machine learning techniques and pre-trained models while in proposed model 2, the cascaded model was proposed. The performance evaluation parameters like accuracy and losses were evaluated. RESULTS: 92% accuracy was obtained using Support Vector Machine using Gray Level Difference Statistics and Shape features with Principal Component Analysis as a feature selection technique while Inception V3 resulted in 95.6% accuracy while the cascaded model resulted in 96.21% accuracy. CONCLUSION: The cascaded model is later validated on other datasets which results in 0.11% and 0.14% accuracy improvement for TCIA and BRaTS datasets respectively.

8.
Nat Commun ; 15(1): 2588, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519457

RESUMEN

We recently achieved the first-in-human transfusion of induced pluripotent stem cell-derived platelets (iPSC-PLTs) as an alternative to standard transfusions, which are dependent on donors and therefore variable in supply. However, heterogeneity characterized by thrombopoiesis-biased or immune-biased megakaryocytes (MKs) continues to pose a bottleneck against the standardization of iPSC-PLT manufacturing. To address this problem, here we employ microRNA (miRNA) switch biotechnology to distinguish subpopulations of imMKCLs, the MK cell lines producing iPSC-PLTs. Upon miRNA switch-based screening, we find imMKCLs with lower let-7 activity exhibit an immune-skewed transcriptional signature. Notably, the low activity of let-7a-5p results in the upregulation of RAS like proto-oncogene B (RALB) expression, which is crucial for the lineage determination of immune-biased imMKCL subpopulations and leads to the activation of interferon-dependent signaling. The dysregulation of immune properties/subpopulations, along with the secretion of inflammatory cytokines, contributes to a decline in the quality of the whole imMKCL population.


Asunto(s)
Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Megacariocitos , Células Madre Pluripotentes Inducidas/metabolismo , Plaquetas/metabolismo , Trombopoyesis/genética , MicroARNs/genética , MicroARNs/metabolismo
9.
Front Nutr ; 10: 1227340, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37712002

RESUMEN

Background: Breastfed infants have lower disease risk compared to formula-fed infants, however, the mechanisms behind this protection are unknown. Human milk has a complex lipidome which may have many critical roles in health and disease risk. However, human milk lipidomics is challenging, and research is still required to fully understand the lipidome and to interpret and translate findings. This study aimed to address key human milk lipidome knowledge gaps and discuss possible implications for early life health. Methods: Human milk samples from two birth cohorts, the Barwon Infant Study (n = 312) and University of Western Australia birth cohort (n = 342), were analysed using four liquid chromatography-mass spectrometry (LC-MS) methods (lipidome, triacylglycerol, total fatty acid, alkylglycerol). Bovine, goat, and soy-based infant formula, and bovine and goat milk were analysed for comparison. Composition was explored as concentrations, relative abundance, and infant lipid intake. Statistical analyses included principal component analysis, mixed effects modelling, and correlation, with false discovery rate correction, to explore human milk lipidome longitudinal trends and inter and intra-individual variation, differences between sample types, lipid intakes, and correlations between infant plasma and human milk lipids. Results: Lipidomics analysis identified 979 lipids. The human milk lipidome was distinct from that of infant formula and animal milk. Ether lipids were of particular interest, as they were significantly higher, in concentration and relative abundance, in human milk than in formula and animal milk, if present in the latter samples at all. Many ether lipids were highest in colostrum, and some changed significantly through lactation. Significant correlations were identified between human milk and infant circulating lipids (40% of which were ether lipids), and specific ether lipid intake by exclusively breastfed infants was 200-fold higher than that of an exclusively formula-fed infant. Conclusion: There are marked differences between the lipidomes of human milk, infant formula, and animal milk, with notable distinctions between ether lipids that are reflected in the infant plasma lipidome. These findings have potential implications for early life health, and may reveal why breast and formula-fed infants are not afforded the same protections. Comprehensive lipidomics studies with outcomes are required to understand the impacts on infant health and tailor translation.

10.
Cardiovasc Diagn Ther ; 13(3): 557-598, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37405023

RESUMEN

The global mortality rate is known to be the highest due to cardiovascular disease (CVD). Thus, preventive, and early CVD risk identification in a non-invasive manner is vital as healthcare cost is increasing day by day. Conventional methods for risk prediction of CVD lack robustness due to the non-linear relationship between risk factors and cardiovascular events in multi-ethnic cohorts. Few recently proposed machine learning-based risk stratification reviews without deep learning (DL) integration. The proposed study focuses on CVD risk stratification by the use of techniques mainly solo deep learning (SDL) and hybrid deep learning (HDL). Using a PRISMA model, 286 DL-based CVD studies were selected and analyzed. The databases included were Science Direct, IEEE Xplore, PubMed, and Google Scholar. This review is focused on different SDL and HDL architectures, their characteristics, applications, scientific and clinical validation, along with plaque tissue characterization for CVD/stroke risk stratification. Since signal processing methods are also crucial, the study further briefly presented Electrocardiogram (ECG)-based solutions. Finally, the study presented the risk due to bias in AI systems. The risk of bias tools used were (I) ranking method (RBS), (II) region-based map (RBM), (III) radial bias area (RBA), (IV) prediction model risk of bias assessment tool (PROBAST), and (V) risk of bias in non-randomized studies-of interventions (ROBINS-I). The surrogate carotid ultrasound image was mostly used in the UNet-based DL framework for arterial wall segmentation. Ground truth (GT) selection is vital for reducing the risk of bias (RoB) for CVD risk stratification. It was observed that the convolutional neural network (CNN) algorithms were widely used since the feature extraction process was automated. The ensemble-based DL techniques for risk stratification in CVD are likely to supersede the SDL and HDL paradigms. Due to the reliability, high accuracy, and faster execution on dedicated hardware, these DL methods for CVD risk assessment are powerful and promising. The risk of bias in DL methods can be best reduced by considering multicentre data collection and clinical evaluation.

11.
Microscopy (Oxf) ; 72(3): 249-264, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-36409001

RESUMEN

Nuclei segmentation of cells is the preliminary and essential step of pathological image analysis. However, robust and accurate cell nuclei segmentation is challenging due to the enormous variability of staining, cell sizes, morphologies, cell adhesion or overlapping of the nucleus. The automation process to find the cell's nuclei is a giant leap in this direction and has an important step toward bioimage analysis using software tools. This article extensively analyzes deep U-Net architecture and has been applied to the Data Science Bowl dataset to segment the cell nuclei. The dataset undergoes various preprocessing tasks such as resizing, intensity normalization and data augmentation prior to segmentation. The complete dataset then undergoes the rigorous training and validation process to find the optimized hyperparameters and then the optimized model selection. The mean (m) ± standard deviation (SD) of Intersection over Union (IoU) and F1-score (Dice score) have been calculated along with accuracy during the training and validation process, respectively. The optimized U-Net model results in a training IoU of 0.94 ± 0.16 (m ± SD), an F1-score of 0.94 ± 0.17 (m ± SD), a training accuracy of 95.54 and validation accuracy of 95.45. With this model, we applied a completely independent test cohort of the dataset and obtained the mean IOU of 0.93, F1-score of 0.9311, and mean accuracy of 94.12, respectively to measure the segmentation performance.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Núcleo Celular , Automatización
12.
Healthcare (Basel) ; 10(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36554017

RESUMEN

Motivation: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Objective: Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches. Methodology: PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems. Conclusions: The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.

13.
J Clin Med ; 11(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36431321

RESUMEN

A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients.

14.
J Cardiovasc Dev Dis ; 9(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36005433

RESUMEN

The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.

15.
Oxid Med Cell Longev ; 2022: 2622310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35941906

RESUMEN

This narrative review summarizes the latest advances in cerebral palsy and identifies where more research is required. Several studies on cerebral palsy were analyzed to generate a general idea of the prevalence of, risk factors associated with, and classification of cerebral palsy (CP). Different classification systems used for the classification of CP on a functional basis were also analyzed. Diagnosis systems used along with the prevention techniques were discussed. State-of-the-art treatment strategies for CP were also analyzed. Statistical distribution was performed based on the selected studies. Prevalence was found to be 2-3/1000 lives; the factors that can be correlated are gestational age and birth weight. The risk factors identified were preconception, prenatal, perinatal, and postnatal categories. According to the evidence, CP is classified into spastic (80%), dyskinetic (15%), and ataxic (5%) forms. Diagnosis approaches were based on clinical investigation and neurological examinations that include magnetic resonance imaging (MRI), biomarkers, and cranial ultrasound. The treatment procedures found were medical and surgical interventions, physiotherapy, occupational therapy, umbilical milking, nanomedicine, and stem cell therapy. Technological advancements in CP were also discussed. CP is the most common neuromotor disability with a prevalence of 2-3/1000 lives. The highest contributing risk factor is prematurity and being underweight. Several preventions and diagnostic techniques like MRI and ultrasound were being used. Treatment like cord blood treatment nanomedicine and stem cell therapy needs to be investigated further in the future to apply in clinical practice. Future studies are indicated in the context of technological advancements among cerebral palsy children.


Asunto(s)
Parálisis Cerebral , Enfermedades del Prematuro , Parálisis Cerebral/complicaciones , Parálisis Cerebral/diagnóstico , Parálisis Cerebral/epidemiología , Niño , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Embarazo , Prevalencia , Factores de Riesgo
16.
Diagnostics (Basel) ; 12(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35885449

RESUMEN

Background and Motivation: Parkinson's disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.

17.
Int J Mol Sci ; 23(14)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35886839

RESUMEN

Non-communicable diseases continue to increase globally and have their origins early in life. Early life obesity tracks from childhood to adulthood, is associated with obesity, inflammation, and metabolic dysfunction, and predicts non-communicable disease risk in later life. There is mounting evidence that these factors are more prevalent in infants who are formula-fed compared to those who are breastfed. Human milk provides the infant with a complex formulation of lipids, many of which are not present in infant formula, or are present in markedly different concentrations, and the plasma lipidome of breastfed infants differs significantly from that of formula-fed infants. With this knowledge, and the knowledge that lipids have critical implications in human health, the lipid composition of human milk is a promising approach to understanding how breastfeeding protects against obesity, inflammation, and subsequent cardiovascular disease risk. Here we review bioactive human milk lipids and lipid metabolites that may play a protective role against obesity and inflammation in later life. We identify key knowledge gaps and highlight priorities for future research.


Asunto(s)
Leche Humana , Enfermedades no Transmisibles , Adolescente , Lactancia Materna , Niño , Femenino , Humanos , Lactante , Fórmulas Infantiles , Fenómenos Fisiológicos Nutricionales del Lactante , Inflamación , Lípidos , Leche Humana/metabolismo , Obesidad/metabolismo , Adulto Joven
18.
Cancers (Basel) ; 14(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35740526

RESUMEN

Radiogenomics, a combination of "Radiomics" and "Genomics," using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.

19.
Diagnostics (Basel) ; 12(5)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35626389

RESUMEN

Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.

20.
Diagnostics (Basel) ; 12(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35626404

RESUMEN

PURPOSE: The role of erectile dysfunction (ED) has recently shown an association with the risk of stroke and coronary heart disease (CHD) via the atherosclerotic pathway. Cardiovascular disease (CVD)/stroke risk has been widely understood with the help of carotid artery disease (CTAD), a surrogate biomarker for CHD. The proposed study emphasizes artificial intelligence-based frameworks such as machine learning (ML) and deep learning (DL) that can accurately predict the severity of CVD/stroke risk using carotid wall arterial imaging in ED patients. METHODS: Using the PRISMA model, 231 of the best studies were selected. The proposed study mainly consists of two components: (i) the pathophysiology of ED and its link with coronary artery disease (COAD) and CHD in the ED framework and (ii) the ultrasonic-image morphological changes in the carotid arterial walls by quantifying the wall parameters and the characterization of the wall tissue by adapting the ML/DL-based methods, both for the prediction of the severity of CVD risk. The proposed study analyzes the hypothesis that ML/DL can lead to an accurate and early diagnosis of the CVD/stroke risk in ED patients. Our finding suggests that the routine ED patient practice can be amended for ML/DL-based CVD/stroke risk assessment using carotid wall arterial imaging leading to fast, reliable, and accurate CVD/stroke risk stratification. SUMMARY: We conclude that ML and DL methods are very powerful tools for the characterization of CVD/stroke in patients with varying ED conditions. We anticipate a rapid growth of these tools for early and better CVD/stroke risk management in ED patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...