RESUMEN
Deformed wing virus (DWV) is known as one of the main viruses that affect honeybees' health all around the world. The virus has two widespread genotypes, DWV-A and DWV-B (VDV-1), transmitted mainly by V. destructor mites. In this study, we collected honeycombs with covered broods from 73 apiaries in eight Lithuanian regions and initially investigated the prevalence of V. destructor mites. Mites were collected from May to the end of July in 2021 from 124 hives. The prevalence of V. destructor infestations in beehives reached 30% and 63% in investigated apiaries. The presence of DWV-A and DWV-B pathogens in mites and broods was examined by RT-qPCR targeting the CRPV-capsid region. The molecular characterization of the virus in mite samples was based on sequence analysis of the RNA-dependent RNA polymerase (RdRp) region. In addition, leader polypeptide (LP), structural protein (Vp3), Helicase, and RdRp genes were used for phylogenetic characterization of dual infection. The prevalences of DWV-B in mites and broods were 56.5% and 31.5%, respectively, while DWV-A was detected in 12.9% of mite samples and 24.7% of brood samples. Some of the examined mite samples harboured dual virus infections. Our findings showed that bee colonies from the same apiary were not always infected by the same viruses. Some bee colonies were virus-free, while others were highly infected. Phylogenetic analysis of 21 sequences demonstrated the presence of highly variable DWV-B and DWV-A genotypes in Lithuania and possible recombinant variants of the virus. This study represents the first molecular characterization of mite-borne pathogens hosted by honeybees (Apis mellifera) in Lithuania.
RESUMEN
The primary objective of this study was to assess the effectiveness of cold plasma therapy in managing subclinical mastitis in cows caused by Streptococcus agalactiae, Streptococcus uberis and Escherichia coli. After detection of mastitis pathogens, 38 cows were selected for cold plasma therapy for five days. On the fifth day of treatment, the mastitis agents were re-examined and no causative agents were identified. An additional evaluation conducted 28 days later confirmed the absence of mastitis. Cow productivity, milk composition and quality indicators were assessed at the beginning of the experiment and 32 days from the start (28 days after treatment cessation). After the mastitis treatment, the somatic cell count decreased significantly by between 2.89 and 7.09 times, and the milk yield of the cows at the end of the experiment increased from 0.63 kg per day to 2.82 kg per day (P < 0.01). These results highlight the potential of this innovative approach for managing a prevalent disease that causes substantial losses in the dairy industry. Furthermore, they lay the groundwork for expanded research involving larger sample sizes.
RESUMEN
Worldwide molecular research of economically important Phalaris arundinacea (Poaceae) is mainly focused on the invasions of this species from Europe to North America. Until the present study, the genetic diversity of the P. arundinacea had not been studied across the Baltic countries. The objective of this research is to evaluate the diversity of Lithuanian populations of P. arundinacea at simple sequence repeat (SSR) loci comparatively among populations of the Baltic countries, Luxembourg, and the Russian Far East (Eurasian), evaluating differentiation between Lithuanian populations and ornamental accessions, and relating these with environmental features. For six selected Lithuanian river basin populations, GBS low density SNPs were used to determine genetic diversity. Bayesian analysis showed that Eurasian populations of Phalaris arundinacea consist of two gene clusters. Statistically significant genetic differentiation among European and Eurasian populations was documented. Lithuanian genotypes growing naturally along rivers are genetically distinct from cultivated ornamentals. GBS-SNPs divided the six selected Nemunas river basins into three distinct groups with one, two, or three rivers in separate groupings for genetic diversity. Genetic diversity is primarily within, rather than among, Lithuanian, eastern European, and Eurasian populations of P. arundinacea across the continent. Thus, restoration efforts would benefit from local population seed origination.
Asunto(s)
Repeticiones de Microsatélite , Repeticiones de Microsatélite/genética , Phalaris/genética , Polimorfismo de Nucleótido Simple , Variación Genética , Europa OrientalRESUMEN
The use of organic compounds in different spheres of human activity is accompanied by their influx to and accumulation in the environment. The negative impact of those compounds can be one of the reasons for a decline in populations and biodiversity of aboveground invertebrates. Chemical compounds can potentially cause a variety of effects (attractant or repellent) on insects, including species of the Staphylinidae family. In a laboratory experiment, we identified repellent and attractant influence of 40 organic compounds and mixtures of compounds (acids, alcohols, ketones, phenols, aldehydes, aromatic carbohydrates solvents, and vehicle fuels) on Philonthus decorus Gravenhorst, 1802. The ambulatory responses of the males and females to the same chemical compounds most often varied. A strong repellent activity against both sexes of Ph. decorus was caused by oleic acid, while hexane repelled the males. Acetic acid, 1-butanol, and ammonia solution were found to be strongly repellent against females. A moderate (average) repellent activity towards male Ph. decorus was displayed by organic solvents and fuels, some alcohols (isopropanol, isoamyl alcohol, methanol, ethanol), acids (acetic, formic acid), aromatic carbohydrates (toluene, xylene), and formaldehyde. Female Ph. decorus in general were less sensitive to the odors. The list of repellents with moderate activity against the females was much shorter: solvent 646, white spirit, toluene, isopropanol, isoamyl alcohol, citric and oxalic acids, and glycerol. Moderate attractant activity for Ph. decorus was exhibited by some amino acids, alcohols, and fuel mixes: glycine and L-cysteine (for the males), and phenylalanine, methanol, and diesel fuel (for the females). The rest of the 40 chemical compounds we studied caused no ambulatory responses in Ph. decorus. The difficulties we encountered in the interpretation of the results suggest a need for further experimental studies that would expand the knowledge of the chemoecology of insects.
RESUMEN
This study aimed to assess the relationship between the length of the dry period (DL) and the risks of dystocia and stillbirths in Holstein cows. A total of 1072 healthy cows in lactations 1 and ≥2 were categorized based on the DL (mean: 58.07 ± 0.33 days) into three groups: short DL (<40 days; 13.0% of cows), medium DL (40-70 days; 60.1%), and long DL (>70 days; 26.9%). Dystocia occurred in 12.4% of cows, while stillbirths accounted for 4.1% of calves. The medium DL group had the highest number of unassisted calvings. The dystocia rates were 11.4% for cows with gestation (GA) ≤ 274 days; 6.0% for cows with GA = 275-282 days; and 19.9% for cows with GA ≥ 283 days (p < 0.001). In season 1 (November-April), dystocia occurred in 15.0% of cases compared to 8.8% in season 2 (May-October) (p < 0.001). The stillbirth rates ranged from 3.6% to 4.0% for cows with medium and long DLs; while those with a short DL had 5.8% (p < 0.05). The stillbirth rates were 5.2% for cows with GA ≤ 274 days; 3.2% for cows with GA = 275-282 days; and 5.1% for cows with GA ≥ 283 days (p < 0.001). Season 1 had a stillbirth rate of 4.8%, while season 2 had a stillbirth rate of 3.3% (p < 0.001). This research provides insights that could assist the dairy industry in making informed decisions to reduce the incidence rates of dystocia and stillbirths in cows.
RESUMEN
Wild rodents are considered to be one of the most important TBEV-amplifying reservoir hosts; therefore, they may be suitable for foci detection studies. To investigate the effectiveness of viral RNA detection in wild rodents for suspected TBEV foci confirmation, we trapped small rodents (n = 139) in various locations in Lithuania where TBEV was previously detected in questing ticks. Murine neuroblastoma Neuro-2a cells were inoculated with each rodent sample to maximize the chances of detecting viral RNA in rodent samples. TBEV RNA was detected in 74.8% (CI 95% 66.7-81.1) of the brain and/or internal organ mix suspensions, and the prevalence rate increased significantly following sample cultivation in Neuro-2a cells. Moreover, a strong correlation (r = 0.88; p < 0.05) was found between the average monthly air temperature of rodent trapping and the TBEV RNA prevalence rate in cell culture isolates of rodent suspensions, which were PCR-negative before cultivation in cell culture. This study shows that wild rodents are suitable sentinel animals to confirm TBEV foci. In addition, the study results demonstrate that sample cultivation in cell culture is a highly efficient method for increasing TBEV viral load to detectable quantities.
Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Ixodes , Animales , Ratones , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/veterinaria , Encefalitis Transmitida por Garrapatas/diagnóstico , Roedores , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Prevalencia , Lituania/epidemiología , ARN Viral/genéticaRESUMEN
Mycoplasma spp. pathogens frequently cause chronic and acute diseases in cats. The aim of the present study was to investigate the presence and genetic diversity of Mycoplasma spp. in cats and their ectoparasites using PCR and sequence analysis of the 16S rRNA gene. Blood samples were collected from 541 domestic and stray cats in Lithuania. Ectoparasites (153 fleas and 321 ticks) were collected from owned domestic cats that live both outdoors and indoors. Mycoplasma spp. were detected in 7.2% of cat blood samples and 4.4% of Ctenocephalides felis fleas. The sequence analysis revealed the presence of Mycoplasma haemofelis in 1.1% of cats and 'Candidatus Mycoplasma haematominutum' in 4.8% of cats. Ct. felis fleas harboured M. haemofelis. To the best of the authors' knowledge, this is the first report on the prevalence and molecular characterisation of Mycoplasma bacteria in cats in Lithuania and cat fleas in the Baltic States.
RESUMEN
The Baltic states are the region in Europe where tick-borne encephalitis (TBE) is most endemic. The highest notification rate of TBE cases is reported in Lithuania, where the incidence of TBE has significantly increased since 1992. A recent study reported 0.4% prevalence of TBE virus (TBEV) in the two most common tick species distributed in Lithuania, Ixodes ricinus and Dermacentor reticulatus, with the existence of endemic foci confirmed in seven out of Lithuania's ten counties. However, until now, no comprehensive data on molecular characterisation and phylogenetic analysis have been available for the circulating TBEV strains. The aim of this study was to analyse TBEV strains derived from I. ricinus and D. reticulatus ticks collected from Lithuania and provide a genotypic characterisation of viruses based on sequence analysis of partial E protein and NS3 genes. The 54 nucleotide sequences obtained were compared with 81 TBEV strains selected from the NCBI database. Phylogenetic analysis of the partial E and NS3 gene sequences derived from 34 Lithuanian TBEV isolates revealed that these were specific to Lithuania, and all belonged to the European subtype, with a maximum identity to the Neudoerfl reference strain (GenBank accession no. U27495) of 98.7% and 97.4%, respectively. The TBEV strains showed significant regional genetic diversity. The detected TBEV genotypes were not specific to the tick species. However, genetic differences were observed between strains from different locations, while strains from the same location showed a high similarity.
Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Ixodes , Animales , Lituania/epidemiología , Filogenia , Encefalitis Transmitida por Garrapatas/epidemiologíaRESUMEN
Babesia vesperuginis is an intraerythrocytic protozoan parasite that circulates among bats and ticks in many countries worldwide. However, the distribution of B. vesperuginis in the Baltic region has not been studied. A total of 86 dead bats from eight different species were collected and screened for Babesia spp. using real-time PCR. Overall, 52.3% (45/86) of the bats were found positive for Babesia spp. The prevalence of Babesia spp. in different organs varied, with the highest prevalence observed in heart tissues (37.0%) and the lowest in liver tissues (22.2%). However, the observed differences in prevalence among organs were not statistically significant. Blood samples from 125 bats of nine different species were also analyzed for Babesia spp. prevalence using real-time PCR and nested PCR. The results showed a prevalence of 35.2% and 22.4%, respectively. Moreover, 28.3% (17/60) of the examined blood samples were confirmed positive for Babesia spp. through blood smear analysis. The total of 32 partial sequences of the 18S rRNA gene derived in this study were 100% identical to B. vesperuginis sequences from GenBank. In eight species of bats, Pipistrellus nathusii, Pipistrellus pipistrellus, Pipistrellus pygmaeus, Vespertilio murinus, Eptesicus nilssonii, Eptesicus serotinus, Myotis daubentonii and Nyctalus noctula, Babesia parasites were identified. In E. nilssonii, Babesia spp. was identified for the first time.
Asunto(s)
Babesia , Babesiosis , Quirópteros , Animales , Babesia/genética , Quirópteros/parasitología , Lituania/epidemiología , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/análisis , Babesiosis/epidemiología , Babesiosis/parasitologíaRESUMEN
The increasing population of European bison (Bison bonasus) can contribute to the prevalence of zoonotic pathogens. The aim of the present study was to assess the presence of A. phagocytophilum infection in European bison tissues as well as ticks removed from European bison in Lithuania and Poland. A further objective of this work was to compare the detected A. phagocytophilum strains. A total of 85 tissue samples (spleen) of European bison and 560 ticks belonging to two species, Ixodes ricinus (n = 408) and Dermacentor reticulatus (n = 152) were tested. DNA of A. phagocytophilum was detected based on RT-PCR in 40% of the European bison samples, 8.8% of the I. ricinus and 5.9% of the D. reticulatus ticks. Analysis of the obtained partial 16S rRNA gene sequences of A. phagocytophilum revealed the presence of three variants with two polymorphic sites. Furthermore, phylogenetic analysis with partial msp4 gene sequences grouped A. phagocytophilum variants into three clusters. This study revealed that the groEL gene sequences of A. phagocytophilum from European bison and their ticks grouped into ecotype I and only one sequence from Lithuanian European bison belonged to ecotype II. The results of the present study indicated that European bison may play a role as a natural reservoir of A. phagocytophilum.
Asunto(s)
Anaplasma phagocytophilum , Bison , Dermacentor , Ixodes , Animales , Polonia/epidemiología , Dermacentor/genética , Lituania/epidemiología , Anaplasma phagocytophilum/genética , Bison/genética , ARN Ribosómico 16S/genética , Filogenia , Ixodes/genéticaRESUMEN
The family Laelapidae (Dermanyssoidea) is morphologically and ecologically the most diverse group of Mesostigmata mites. Although molecular genetic data are widely used in taxonomic identification and phylogenetic analysis, most classifications in Mesostigmata mites are based solely on morphological characteristics. In the present study, eight species of mites from the Laelapidae (Dermanyssoidea) family collected from different species of small rodents in Lithuania, Norway, Slovakia, and the Czech Republic were molecularly characterized using the nuclear (28S ribosomal RNA) and mitochondrial (cytochrome oxidase subunit I gene) markers. Obtained molecular data from 113 specimens of mites were used to discriminate between species and investigate the phylogenetic relationships and genetic diversity among Laelapidae mites from six genera. This study provides new molecular data on Laelaps agilis, Laelaps hilaris, Laelaps jettmari, Haemogamasus nidi, Eulaelaps stabularis, Hyperlaelaps microti, Myonyssus gigas, and Hirstionyssus sp. mites collected from different rodent hosts and geographical regions in Europe.
RESUMEN
Early identification of lameness at all phases of lactation improves milk yield and reduces the incidence of mastitis in the herd. According to the literature we hypothesized that there are associations of electrical conductivity variables of milk flow with lameness in dairy cows. The aim of this study was to determine if blood cortisol and electrical conductivity in the milk flow phases correlate with each other and whether they are related to cow lameness. On one farm, out of 1500 cows, 64 cows with signs of lameness and 56 healthy cows were selected with an average of 2.8 lactations and 60 days in the postpartum period. A local veterinarian who specializes in hoof care treatments identified and scored lameness. During evening milking, the milk flow of all 120 cows was measured using electronic milk flow meters (Lactocorder®, WMB AG, Balgache, Switzerland). Before each milking, two electronic mobile milk flow meters (Lactocorders) were mounted between the milking apparatus and the milking tube to take measurements. We found that the average cortisol concentration in the blood of the studied cows was significantly correlated with the laminitis score. Results of this study indicate that the number of non-lame cows with a milk electrical conductivity level of <6 mS/cm even reached 90.8−92.3% of animals. Milk electrical conductivity indicators ≥ 6 mS/cm were determined in 17.8−29.0% more animals in the group of lame cows compared to the group of non-lame cows. According to our study, we detected that blood cortisol concentration had the strongest positive correlation with milk electrical conductivity indicators. Cows with a greater lameness score had a higher cortisol content and milk conductivity.
RESUMEN
The genus Bartonella contains facultative Gram-negative intracellular bacteria from the family Bartonellaceae that can cause diseases in humans and animals. Various Bartonella species have been detected in rodents' ectoparasites, such as fleas, ticks, mites, and lice. However, the role of laelapid mites (Mesostigmata: Laelapidae) as carriers of Bartonella spp. needs to be confirmed. We aimed to investigate the presence of Bartonella spp. in laelapid mites collected from small rodents in Lithuania using real-time PCR targeting the transfer-messenger RNA/tmRNA (ssrA) gene and to characterize Bartonella strains using nested PCR and sequence analysis of the 16S-23S rRNA intergenic transcribed spacer region (ITS). A total of 271 laelapid mites of five species (Laelaps agilis, Haemogamasus nidi, Eulaelaps stabularis, Myonyssus gigas, and Hyperlaelaps microti) were collected from five rodent species (Apodemus flavicollis, Apodemus agrarius, Clethrionomys glareolus, Micromys minutus, and Microtus oeconomus) during 2015-2016. Bartonella DNA was detected in three mite species L. agilis, M. gigas, and Hg. nidi with an overall prevalence of 11.4%. Sequence analysis of the 16S-23S rRNA ITS region revealed the presence of Bartonella taylorii in L. agilis, Hg. nidi, and M. gigas, and Bartonella grahamii in L. agilis. Our results suggest that laelapid mites are involved in the maintenance of rodent-associated Bartonella spp. in nature. To the best of the authors' knowledge, this is the first study to demonstrate the presence of Bartonella spp. DNA in laelapid mites from small rodents.
Asunto(s)
Infecciones por Bartonella , Bartonella , Mercurio , Ácaros , Humanos , Animales , Ácaros/genética , Ácaros/microbiología , Lituania/epidemiología , ARN Ribosómico 23S , Bartonella/genética , Murinae , Arvicolinae , ADN Intergénico , FilogeniaRESUMEN
The emergence of African swine fever (ASF) in Lithuania and its subsequent persistence has led to a decline in the population of wild boar (Sus scrofa). ASF has been spreading in Lithuania since its introduction, therefore it is important to understand any genetic impact of ASF outbreaks on wild boar populations. The aim of this study was to assess how the propensity for an outbreak has shaped genetic variation in the wild boar population. A total of 491 wild boar samples were collected and genotyped using 16 STR markers. Allele richness varied between 15 and 51, and all SSR loci revealed a significant deviation from the Hardy-Weinberg equilibrium. Fixation indices indicated a significant reduction in heterozygosity within and between subpopulations. PCoA and STRUCTURE analysis demonstrated genetic differences between the western region which had had no outbreaks (restricted zone I) and the region with ASF infection (restricted zones II and III). It is concluded that environmental factors may play a particular role in shaping the regional gene flow and influence the genetic structure of the wild boar population in the region with ASF outbreaks.
Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/genética , Animales , Estructuras Genéticas , Lituania/epidemiología , Sus scrofa/genética , Porcinos/genéticaRESUMEN
Paenibacillus larvae bacterium is known to be the causative agent of American foulbrood (AFB), a widespread, highly contagious and fatal disease in honey bees (Apis mellifera). There are four genotypes of Paenibacillus larvae that are named after their enterobacterial repetitive consensus (ERIC), and a fifth ERIC genotype has recently been found. In this study, a total of 108 independent P. larvae isolates from different geographical regions in Lithuania collected between 2011 and 2021 were investigated by molecular methods. The aims of this study were to detect which enterobacterial repetitive intergenic consensus (ERIC) genotype is the most common in Lithuania apiaries, identify and differentiate subtypes of the defined genotype by using multiple-locus variable number of tandem-repeat analysis (MLVA), and review how bacterial molecular diversity has changed over time in different parts of Lithuania. The obtained molecular analysis results showed that 100% of P. larvae bacterial isolates from Lithuania belong to the ERIC I genotype and can be differentiated to nine different subtypes by using the MLVA and capillary electrophoresis methods.
RESUMEN
Canine babesiosis is an emerging and rapidly expanding tick-borne disease in central and northeast Europe. In the last two decades, the endemic area of Babesia canis has expanded from central Europe to the Baltic region. This study aimed to investigate the genetic diversity of B. canis strains isolated from naturally infected dogs in different regions of Lithuania using PCR-RFLP and sequence analyses based on a partial region of 18S rRNA and Bc28.1 genes. Blood samples from 149 dogs suspected of having babesiosis were collected in Lithuania during 2016-2017. Based on PCR-RFLP profiles and two nucleotide substitutions observed in 18S rRNA gene sequences, three B. canis genotypes were identified in Lithuania-18S rRNA-A, 18S rRNA-B and 18S rRNA-A/B-with the A/B genotype predominating (83.9%). Based on the obtained PCR-RFLP profiles of the Bc28.1 gene, four B. canis genotypes were identified: Bc28.1-B (53.8%), Bc28.1-34 (20.8%), Bc28.1-A (17.9%), and Bc28.1-34/A or B (7.5%). Sequence analysis of the partial Bc28.1 gene revealed eighteen polymorphic sites and thirteen sequence variants among the Lithuanian samples. The B. canis genotypes obtained were detected with varying prevalences in different regions of Lithuania.
RESUMEN
We hypothesized that subclinical mastitis detected during the last gestation period can increase the risk of stillbirth in dairy calves. The aim was to investigate the relation of subclinical mastitis detected during the last gestation period and its pathogens with the stillbirth of calves. Cows from the 210th day of pregnancy were selected for the study. They were divided into two groups: the first group-subclinical mastitis was confirmed on the farm by the California mastitis test (CMT); the second group of cows-mastitis was not confirmed by the CMT test. Groups of cows were compared according to the results of their calving-the number of stillborn calves. A stillborn calf was defined as a calf that dies at birth or within the first 24 h after calving, following a gestation period of 260 days. Our results suggest that decreasing the incidence of subclinical mastitis during the last gestation period (from the 210th day of pregnancy) can decrease the risk of stillbirth in dairy calves. Further, it is important to identify the pathogen because the highest risk of stillbirth was found in cows with mastitis caused by Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, pathogenic Staphylococci and other Streptococci. Cows at the first calving had a 1.38-1.65-times higher risk of having stillborn calves than cows of parity ≥ 2. From a practical point, veterinarians and farmers can consider the effect of subclinical mastitis during late gestation on the risk of stillbirth and it could help for strategies of optimizing reproductive performance in dairy cows.
RESUMEN
To provide the most comprehensive picture of species phylogeny and phylogeography of European roe deer (Capreolus capreolus), we analyzed mtDNA control region (610 bp) of 1469 samples of roe deer from Central and Eastern Europe and included into the analyses additional 1541 mtDNA sequences from GenBank from other regions of the continent. We detected two mtDNA lineages of the species: European and Siberian (an introgression of C. pygargus mtDNA into C. capreolus). The Siberian lineage was most frequent in the eastern part of the continent and declined toward Central Europe. The European lineage contained three clades (Central, Eastern, and Western) composed of several haplogroups, many of which were separated in space. The Western clade appeared to have a discontinuous range from Portugal to Russia. Most of the haplogroups in the Central and the Eastern clades were under expansion during the Weichselian glacial period before the Last Glacial Maximum (LGM), while the expansion time of the Western clade overlapped with the Eemian interglacial. The high genetic diversity of extant roe deer is the result of their survival during the LGM probably in a large, contiguous range spanning from the Iberian Peninsula to the Caucasus Mts and in two northern refugia.
RESUMEN
There is now considerable evidence that in Europe, babesiosis is an emerging infectious disease, with some of the causative species spreading as a consequence of the increasing range of their tick vector hosts. In this review, we summarize both the historic records and recent findings on the occurrence and incidence of babesiosis in 20 European countries located in southeastern Europe (Bosnia and Herzegovina, Croatia, and Serbia), central Europe (Austria, the Czech Republic, Germany, Hungary, Luxembourg, Poland, Slovakia, Slovenia, and Switzerland), and northern and northeastern Europe (Lithuania, Latvia, Estonia, Iceland, Denmark, Finland, Sweden, and Norway), identified in humans and selected species of domesticated animals (cats, dogs, horses, and cattle). Recorded cases of human babesiosis are still rare, but their number is expected to rise in the coming years. This is because of the widespread and longer seasonal activity of Ixodes ricinus as a result of climate change and because of the more extensive use of better molecular diagnostic methods. Bovine babesiosis has a re-emerging potential because of the likely loss of herd immunity, while canine babesiosis is rapidly expanding in central and northeastern Europe, its occurrence correlating with the rapid, successful expansion of the ornate dog tick (Dermacentor reticulatus) populations in Europe. Taken together, our analysis of the available reports shows clear evidence of an increasing annual incidence of babesiosis across Europe in both humans and animals that is changing in line with similar increases in the incidence of other tick-borne diseases. This situation is of major concern, and we recommend more extensive and frequent, standardized monitoring using a "One Health" approach.
RESUMEN
Bartonella bacteria infect the erythrocytes and endothelial cells of mammalians. The spread of the Bartonella infection occurs mainly via bloodsucking arthropod vectors. Studies on Bartonella infection in European bison, the largest wild ruminant in Europe, are lacking. They are needed to clarify their role in the maintenance and transmission of Bartonella spp. The aim of this study was to investigate the presence of the Bartonella pathogen in European bison and their ticks in Lithuania. A total of 38 spleen samples from bison and 258 ticks belonging to the Ixodes ricinus and Dermacentor reticulatus species were examined. The bison and tick samples were subjected to ssrA, 16S-23S rRNA ITS, gltA, and rpoB partial gene fragment amplification using various variants of PCR. Bartonella DNA was detected in 7.9% of the tissue samples of European bison. All tick samples were negative for Bartonella spp. The phylogenetic analysis of 16S-23S rRNA ITS, gltA, and rpoB partial gene fragment revealed that European bison were infected by B. bovis (2.6%) and B. schoenbuchensis (5.3%). This is the first report addressing the occurrence of B. bovis and B. schoenbuchensis in European bison in Europe.