Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 1729: 107-126, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29429087

RESUMEN

Most motile bacteria follow spatial gradients of chemical and physical stimuli in their environment. In Escherichia coli and other bacteria, the best characterized chemotaxis is in gradients of amino acids or sugars, but other physiological stimuli such as pH, osmolarity, redox potentials, and temperature are also known to elicit tactic responses. These multiple environmental stimuli are integrated and processed within a highly sophisticated chemotaxis network to generate coordinated chemotaxis behavior, which features high sensitivity, a wide dynamic range, and robustness against variations in background stimulation, protein levels, and temperature. Although early studies relied on behavioral analyses to characterize chemotactic responses in vivo, or on biochemical assays to study the pathway in vitro, we describe here a method to directly measure the intracellular pathway response using Förster resonance energy transfer (FRET). In E. coli, the most commonly used form of the FRET assay relies on the interaction between the phosphorylated response regulator CheY and its phosphatase CheZ to quantify activity of the histidine kinase CheA. We further describe a FRET assay for Bacillus subtilis, which employs CheY and the motor-associated phosphatase FliY as a FRET pair. In particular, we highlight the use of FRET to quantify pathway properties, including signal amplification, dynamic range, and kinetics of adaptation.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Escherichia coli/fisiología , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Quimiotaxis , Proteínas de Escherichia coli/metabolismo , Histidina Quinasa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Transducción de Señal
2.
Elife ; 62017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28826491

RESUMEN

In bacteria various tactic responses are mediated by the same cellular pathway, but sensing of physical stimuli remains poorly understood. Here, we combine an in-vivo analysis of the pathway activity with a microfluidic taxis assay and mathematical modeling to investigate the thermotactic response of Escherichia coli. We show that in the absence of chemical attractants E. coli exhibits a steady thermophilic response, the magnitude of which decreases at higher temperatures. Adaptation of wild-type cells to high levels of chemoattractants sensed by only one of the major chemoreceptors leads to inversion of the thermotactic response at intermediate temperatures and bidirectional cell accumulation in a thermal gradient. A mathematical model can explain this behavior based on the saturation-dependent kinetics of adaptive receptor methylation. Lastly, we find that the preferred accumulation temperature corresponds to optimal growth in the presence of the chemoattractant serine, pointing to a physiological relevance of the observed thermotactic behavior.


Asunto(s)
Factores Quimiotácticos/farmacología , Escherichia coli K12/efectos de los fármacos , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Receptores de Superficie Celular/genética , Taxia/fisiología , Adaptación Fisiológica , Ácido Aspártico/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/crecimiento & desarrollo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Técnicas Analíticas Microfluídicas , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Serina/farmacología , Transducción de Señal , Temperatura
3.
Mol Microbiol ; 102(5): 925-938, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27611183

RESUMEN

Shewanella oneidensis MR-1 possesses two different stator units to drive flagellar rotation, the Na+ -dependent PomAB stator and the H+ -driven MotAB stator, the latter possibly acquired by lateral gene transfer. Although either stator can independently drive swimming through liquid, MotAB-driven motors cannot support efficient motility in structured environments or swimming under anaerobic conditions. Using ΔpomAB cells we isolated spontaneous mutants able to move through soft agar. We show that a mutation that alters the structure of the plug domain in MotB affects motor functions and allows cells to swim through media of increased viscosity and under anaerobic conditions. The number and exchange rates of the mutant stator around the rotor were not significantly different from wild-type stators, suggesting that the number of stators engaged is not the cause of increased swimming efficiency. The swimming speeds of planktonic mutant MotAB-driven cells was reduced, and overexpression of some of these stators caused reduced growth rates, implying that mutant stators not engaged with the rotor allow some proton leakage. The results suggest that the mutations in the MotB plug domain alter the proton interactions with the stator ion channel in a way that both increases torque output and allows swimming at decreased pmf values.


Asunto(s)
Flagelos/genética , Proteínas Motoras Moleculares/genética , Shewanella/genética , Anaerobiosis , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Mutación , Protones , Shewanella/metabolismo , Viscosidad
4.
Mol Microbiol ; 96(5): 993-1001, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25727785

RESUMEN

The bacterial flagellar motor is an intricate nanomachine which converts ion gradients into rotational movement. Torque is created by ion-dependent stator complexes which surround the rotor in a ring. Shewanella oneidensis MR-1 expresses two distinct types of stator units: the Na(+)-dependent PomA4 B2 and the H(+)-dependent MotA4 B2. Here, we have explored the stator unit dynamics in the MR-1 flagellar system by using mCherry-labeled PomAB and MotAB units. We observed a total of between 7 and 11 stator units in each flagellar motor. Both types of stator units exchanged between motors and a pool of stator complexes in the membrane, and the exchange rate of MotAB, but not of PomAB, units was dependent on the environmental Na(+)-levels. In 200 mM Na(+), the numbers of PomAB and MotAB units in wild-type motors was determined to be about 7:2 (PomAB:MotAB), shifting to about 6:5 without Na(+). Significantly, the average swimming speed of MR-1 cells at low Na(+) conditions was increased in the presence of MotAB. These data strongly indicate that the S. oneidensis flagellar motors simultaneously use H(+) and Na(+) driven stators in a configuration governed by MotAB incorporation efficiency in response to environmental Na(+) levels.


Asunto(s)
Flagelos/genética , Flagelos/fisiología , Proteínas Motoras Moleculares/metabolismo , Shewanella/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Motoras Moleculares/genética , Mutación , Shewanella/genética , Shewanella/ultraestructura , Sodio/metabolismo
5.
Mol Microbiol ; 83(2): 335-50, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22151089

RESUMEN

Bacterial flagellar motors are intricate nanomachines in which the stator units and rotor component FliM may be dynamically exchanged during function. Similar to other bacterial species, the gammaproteobacterium Shewanella putrefaciens CN-32 possesses a complete secondary flagellar system along with a corresponding stator unit. Expression of the secondary system occurs during planktonic growth in complex media and leads to the formation of a subpopulation with one or more additional flagella at random positions in addition to the primary polar system. We used physiological and phenotypic characterizations of defined mutants in concert with fluorescent microscopy on labelled components of the two different systems, the stator proteins PomB and MotB, the rotor components FliM(1) and FliM(2), and the auxiliary motor components MotX and MotY, to determine localization, function and dynamics of the proteins in the flagellar motors. The results demonstrate that the polar flagellum is driven by a Na(+)-dependent FliM(1)/PomAB/MotX/MotY flagellar motor while the secondary system is rotated by a H(+)-dependent FliM(2)/MotAB motor. The components were highly specific for their corresponding motor and are unlikely to be extensively swapped or shared between the two flagellar systems under planktonic conditions. The results have implications for both specificity and dynamics of flagellar motor components.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flagelos/fisiología , Locomoción , Proteínas Motoras Moleculares/metabolismo , Shewanella putrefaciens/fisiología , Proteínas Bacterianas/genética , Flagelos/genética , Flagelos/metabolismo , Genes Reporteros , Microscopía Fluorescente , Proteínas Motoras Moleculares/genética , Mutación , Unión Proteica , Mapeo de Interacción de Proteínas , Bombas de Protones/metabolismo , Shewanella putrefaciens/genética , Shewanella putrefaciens/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Coloración y Etiquetado/métodos
6.
Microbiology (Reading) ; 156(Pt 5): 1275-1283, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20203052

RESUMEN

Many bacteria are motile by means of flagella, semi-rigid helical filaments rotated at the filament's base and energized by proton or sodium-ion gradients. Torque is created between the two major components of the flagellar motor: the rotating switch complex and the cell-wall-associated stators, which are arranged in a dynamic ring-like structure. Being motile provides a survival advantage to many bacteria, and thus the flagellar motor should work optimally under a wide range of environmental conditions. Recent studies have demonstrated that numerous species possess a single flagellar system but have two or more individual stator systems that contribute differentially to flagellar rotation. This review describes recent findings on rotor-stator interactions, on the role of different stators, and on how stator selection could be regulated. An emerging model suggests that bacterial flagellar motors are dynamic and can be tuned by stator swapping in response to different environmental conditions.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Flagelos/fisiología , Flagelos/química , Modelos Biológicos , Proteínas Motoras Moleculares/fisiología , Sodio/fisiología
7.
J Bacteriol ; 191(16): 5085-93, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19502394

RESUMEN

The single polar flagellum of Shewanella oneidensis MR-1 is powered by two different stator complexes, the sodium-dependent PomAB and the proton-driven MotAB. In addition, Shewanella harbors two genes with homology to motX and motY of Vibrio species. In Vibrio, the products of these genes are crucial for sodium-dependent flagellar rotation. Resequencing of S. oneidensis MR-1 motY revealed that the gene does not harbor an authentic frameshift as was originally reported. Mutational analysis demonstrated that both MotX and MotY are critical for flagellar rotation of S. oneidensis MR-1 for both sodium- and proton-dependent stator systems but do not affect assembly of the flagellar filament. Fluorescence tagging of MotX and MotY to mCherry revealed that both proteins localize to the flagellated cell pole depending on the presence of the basal flagellar structure. Functional localization of MotX requires MotY, whereas MotY localizes independently of MotX. In contrast to the case in Vibrio, neither protein is crucial for the recruitment of the PomAB or MotAB stator complexes to the flagellated cell pole, nor do they play a major role in the stator selection process. Thus, MotX and MotY are not exclusive features of sodium-dependent flagellar systems. Furthermore, MotX and MotY in Shewanella, and possibly also in other genera, must have functions beyond the recruitment of the stator complexes.


Asunto(s)
Proteínas Bacterianas/fisiología , Flagelos/fisiología , Proteínas de la Membrana/fisiología , Shewanella/metabolismo , Shewanella/fisiología , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Mutagénesis , Fenotipo , Unión Proteica , Shewanella/genética
8.
Mol Microbiol ; 71(4): 836-50, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19170881

RESUMEN

The Gram-negative metal ion-reducing bacterium Shewanella oneidensis MR-1 is motile by means of a single polar flagellum. We identified two potential stator systems, PomAB and MotAB, each individually sufficient as a force generator to drive flagellar rotation. Physiological studies indicate that PomAB is sodium-dependent while MotAB is powered by the proton motive force. Flagellar function mainly depends on the PomAB stator; however, the presence of both stator systems under low-sodium conditions results in a faster swimming phenotype. Based on stator homology analysis we speculate that MotAB has been acquired by lateral gene transfer as a consequence of adaptation to a low-sodium environment. Expression analysis at the single cell level showed that both stator systems are expressed simultaneously. An active PomB-mCherry fusion protein effectively localized to the flagellated cell pole in 70-80% of the population independent of sodium concentrations. In contrast, polar localization of MotB-mCherry increased with decreasing sodium concentrations. In the absence of the Pom stator, MotB-mCherry localized to the flagellated cell pole independently of the sodium concentration but was rapidly displaced upon expression of PomAB. We propose that selection of the stator occurs at the level of protein localization in response to sodium concentrations.


Asunto(s)
Flagelos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Shewanella/metabolismo , Sodio/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , Flagelos/genética , Prueba de Complementación Genética , Proteínas Motoras Moleculares/genética , Filogenia , Eliminación de Secuencia , Shewanella/genética , Especificidad por Sustrato , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...