Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
2.
Sci Signal ; 17(849): eadk5736, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137246

RESUMEN

Different ligands stabilize specific conformations of the angiotensin II type 1 receptor (AT1R) that direct distinct signaling cascades mediated by heterotrimeric G proteins or ß-arrestin. These different active conformations are thought to engage distinct intracellular transducers because of differential phosphorylation patterns in the receptor C-terminal tail (the "barcode" hypothesis). Here, we identified the AT1R barcodes for the endogenous agonist AngII, which stimulates both G protein activation and ß-arrestin recruitment, and for a synthetic biased agonist that only stimulates ß-arrestin recruitment. The endogenous and ß-arrestin-biased agonists induced two different ensembles of phosphorylation sites along the C-terminal tail. The phosphorylation of eight serine and threonine residues in the proximal and middle portions of the tail was required for full ß-arrestin functionality, whereas phosphorylation of the serine and threonine residues in the distal portion of the tail had little influence on ß-arrestin function. Similarly, molecular dynamics simulations showed that the proximal and middle clusters of phosphorylated residues were critical for stable ß-arrestin-receptor interactions. These findings demonstrate that ligands that stabilize different receptor conformations induce different phosphorylation clusters in the C-terminal tail as barcodes to evoke distinct receptor-transducer engagement, receptor trafficking, and signaling.


Asunto(s)
Receptor de Angiotensina Tipo 1 , Transducción de Señal , beta-Arrestinas , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/genética , Fosforilación , Humanos , beta-Arrestinas/metabolismo , beta-Arrestinas/genética , Células HEK293 , Simulación de Dinámica Molecular , Angiotensina II/metabolismo
3.
Cell ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39094570

RESUMEN

Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone. Mrc1 contains a conserved histone-binding domain that forms a brace around the H3-H4 tetramer mimicking nucleosomal DNA and H2A-H2B histones, is required for heterochromatin inheritance, and promotes parental histone recycling during replication. We further identify binding sites for the FACT histone chaperone in Swi1/TIMELESS and DNA polymerase α that are required for heterochromatin inheritance. We propose that Mrc1, in concert with FACT acting as a mobile co-chaperone, coordinates the distribution of parental histones to newly replicated DNA.

4.
Nat Aging ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117982

RESUMEN

Although cancer is an age-related disease, how the processes of aging contribute to cancer progression is not well understood. In this study, we uncovered how mouse B cell lymphoma develops as a consequence of a naturally aged system. We show here that this malignancy is associated with an age-associated clonal B cell (ACBC) population that likely originates from age-associated B cells. Driven by c-Myc activation, promoter hypermethylation and somatic mutations, IgM+ ACBCs clonally expand independently of germinal centers and show increased biological age. ACBCs become self-sufficient and support malignancy when transferred into young recipients. Inhibition of mTOR or c-Myc in old mice attenuates pre-malignant changes in B cells during aging. Although the etiology of mouse and human B cell lymphomas is considered distinct, epigenetic changes in transformed mouse B cells are enriched for changes observed in human B cell lymphomas. Together, our findings characterize the spontaneous progression of cancer during aging through both cell-intrinsic and microenvironmental changes and suggest interventions for its prevention.

5.
Int J Nurs Pract ; : e13291, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051426

RESUMEN

AIM: The aim of this study is to test the validity and reliability of the shortened version of the Scale for the Environments Evaluation of Professional Nursing Practice (SEE-Nursing Practice). METHODS: This methodological, cross-sectional study was conducted between September and December 2022. The original version of the SEE-Nursing Practice was administered in questionnaire format across 17 hospitals. Exploratory and confirmatory factor analyses were conducted to identify relevant items for the new shortened version of the scale and evaluate its construct validity. RESULTS: The study involved 1713 registered nurses from various regions of Portugal. From the exploratory factor analysis, the SEE-Nursing Practice was condensed to 59 items and 3 subscales. In the structure subscale, 14 items were removed, and the remaining 29 items distributed over four factors; in the process subscale, 18 items were removed, and the remaining 19 items organized into three factors; in the outcome subscale, 2 items were removed, and the remaining 11 items distributed over two factors. The Cronbach's alpha for the three subscales exceeded 0.90, indicating high reliability. Confirmatory factor analyses provided support for the validity of the 59-item model. CONCLUSION: The shortened version of the SEE-Nursing Practice shows adequate validity and reliability, reducing the burden associated with its longer version.

6.
Proc Natl Acad Sci U S A ; 121(32): e2319091121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074279

RESUMEN

Understanding the normal function of the Huntingtin (HTT) protein is of significance in the design and implementation of therapeutic strategies for Huntington's disease (HD). Expansion of the CAG repeat in the HTT gene, encoding an expanded polyglutamine (polyQ) repeat within the HTT protein, causes HD and may compromise HTT's normal activity contributing to HD pathology. Here, we investigated the previously defined role of HTT in autophagy specifically through studying HTT's association with ubiquitin. We find that HTT interacts directly with ubiquitin in vitro. Tandem affinity purification was used to identify ubiquitinated and ubiquitin-associated proteins that copurify with a HTT N-terminal fragment under basal conditions. Copurification is enhanced by HTT polyQ expansion and reduced by mimicking HTT serine 421 phosphorylation. The identified HTT-interacting proteins include RNA-binding proteins (RBPs) involved in mRNA translation, proteins enriched in stress granules, the nuclear proteome, the defective ribosomal products (DRiPs) proteome and the brain-derived autophagosomal proteome. To determine whether the proteins interacting with HTT are autophagic targets, HTT knockout (KO) cells and immunoprecipitation of lysosomes were used to investigate autophagy in the absence of HTT. HTT KO was associated with reduced abundance of mitochondrial proteins in the lysosome, indicating a potential compromise in basal mitophagy, and increased lysosomal abundance of RBPs which may result from compensatory up-regulation of starvation-induced macroautophagy. We suggest HTT is critical for appropriate basal clearance of mitochondrial proteins and RBPs, hence reduced HTT proteostatic function with mutation may contribute to the neuropathology of HD.


Asunto(s)
Proteína Huntingtina , Lisosomas , Mitocondrias , Proteínas de Unión al ARN , Ubiquitina , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Lisosomas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Ubiquitina/metabolismo , Mitocondrias/metabolismo , Autofagia , Animales , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ratones , Unión Proteica , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Péptidos/metabolismo
7.
J Extracell Biol ; 3(6): e159, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38947171

RESUMEN

Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are secreted by cells and play a critical role in cell-to-cell communication. Despite the promising reports regarding their diagnostic and therapeutic potential, the utilization of EVs in the clinical setting is limited due to insufficient information about their cargo and a lack of standardization in isolation and analysis methods. Considering protein cargos in EVs as key contributors to their therapeutic potency, we conducted a tandem mass tag (TMT) quantitative proteomics analysis of three subpopulations of mesenchymal stem cell (MSC)-derived EVs obtained through three different isolation techniques: ultracentrifugation (UC), high-speed centrifugation (HS), and ultracentrifugation on sucrose cushion (SU). Subsequently, we checked EV marker expression, size distribution, and morphological characterization, followed by bioinformatic analysis. The bioinformatic analysis of the proteome results revealed that these subpopulations exhibit distinct molecular and functional characteristics. The choice of isolation method impacts the proteome of isolated EVs by isolating different subpopulations of EVs. Specifically, EVs isolated through the high-speed centrifugation (HS) method exhibited a higher abundance of ribosomal and mitochondrial proteins. Functional apoptosis assays comparing isolated mitochondria with EVs isolated through different methods revealed that HS-EVs, but not other EVs, induced early apoptosis in cancer cells. On the other hand, EVs isolated using the sucrose cushion (SU) and ultracentrifugation (UC) methods demonstrated a higher abundance of proteins primarily involved in the immune response, cell-cell interactions and extracellular matrix interactions. Our analyses unveil notable disparities in proteins and associated biological functions among EV subpopulations, underscoring the importance of meticulously selecting isolation methods and resultant EV subpopulations based on the intended application.

8.
Nat Commun ; 15(1): 5409, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926334

RESUMEN

Targeted protein degradation (TPD) relies on small molecules to recruit proteins to E3 ligases to induce their ubiquitylation and degradation by the proteasome. Only a few of the approximately 600 human E3 ligases are currently amenable to this strategy. This limits the actionable target space and clinical opportunities and thus establishes the necessity to expand to additional ligases. Here we identify and characterize SP3N, a specific degrader of the prolyl isomerase FKBP12. SP3N features a minimal design, where a known FKBP12 ligand is appended with a flexible alkylamine tail that conveys degradation properties. We found that SP3N is a precursor and that the alkylamine is metabolized to an active aldehyde species that recruits the SCFFBXO22 ligase for FKBP12 degradation. Target engagement occurs via covalent adduction of Cys326 in the FBXO22 C-terminal domain, which is critical for ternary complex formation, ubiquitylation and degradation. This mechanism is conserved for two recently reported alkylamine-based degraders of NSD2 and XIAP, thus establishing alkylamine tethering and covalent hijacking of FBXO22 as a generalizable TPD strategy.


Asunto(s)
Proteínas F-Box , Proteolisis , Ubiquitinación , Humanos , Proteínas F-Box/metabolismo , Proteínas F-Box/química , Células HEK293 , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteína 1A de Unión a Tacrolimus/genética , Ubiquitina-Proteína Ligasas/metabolismo , Aminas/metabolismo , Aminas/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Ligandos , Receptores Citoplasmáticos y Nucleares
9.
Mech Ageing Dev ; 220: 111951, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825059

RESUMEN

Animal longevity is a function of global vital organ functionality and, consequently, a complex polygenic trait. Yet, monogenic regulators controlling overall or organ-specific ageing exist, owing their conservation to their function in growth and development. Here, by using pathway analysis combined with wet-biology methods on several dynamic timelines, we identified Hnf1a as a novel master regulator of the maturation and ageing in the adult pancreatic islet during the first year of life. Conditional transgenic mice bearing suboptimal levels of this transcription factor in the pancreatic islets displayed age-dependent changes, with a profile echoing precocious maturation. Additionally, the comparative pathway analysis revealed a link between Hnf1a age-dependent regulation and immune signaling, which was confirmed in the ageing timeline of an overly immunodeficient mouse model. Last, the global proteome analysis of human islets spanning three decades of life largely backed the age-specific regulation observed in mice. Collectively, our results suggest a novel role of Hnf1a as a monogenic regulator of the maturation and ageing process in the pancreatic islet via a direct or indirect regulatory loop with immune signaling.


Asunto(s)
Envejecimiento , Factor Nuclear 1-alfa del Hepatocito , Islotes Pancreáticos , Transducción de Señal , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Animales , Islotes Pancreáticos/metabolismo , Ratones , Humanos , Transducción de Señal/fisiología , Envejecimiento/metabolismo , Envejecimiento/fisiología , Ratones Transgénicos
10.
Acta Neuropathol Commun ; 12(1): 89, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845058

RESUMEN

The microtubule-associated protein Tau is a key player in various neurodegenerative conditions, including Alzheimer's disease (AD) and Tauopathies, where its hyperphosphorylation disrupts neuronal microtubular lattice stability. Glaucoma, a neurodegenerative disorder affecting the retina, leads to irreversible vision loss by damaging retinal ganglion cells and the optic nerve, often associated with increased intraocular pressure. Prior studies have indicated Tau expression and phosphorylation alterations in the retina in both AD and glaucoma, yet the causative or downstream nature of Tau protein changes in these pathologies remains unclear. This study investigates the impact of Tau protein modulation on retinal neurons under normal and experimental glaucoma conditions. Employing AAV9-mediated gene therapy for Tau overexpression and knockdown, both manipulations were found to adversely affect retinal structural and functional measures as well as neuroprotective Akt/Erk survival signalling in healthy conditions. In the experimental glaucoma model, Tau overexpression intensified inner retinal degeneration, while Tau silencing provided significant protection against these degenerative changes. These findings underscore the critical role of endogenous Tau protein levels in preserving retinal integrity and emphasize the therapeutic potential of targeting Tau in glaucoma pathology.


Asunto(s)
Terapia Genética , Glaucoma , Proteínas tau , Proteínas tau/metabolismo , Animales , Glaucoma/metabolismo , Glaucoma/patología , Glaucoma/genética , Terapia Genética/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/genética , Retina/metabolismo , Retina/patología , Sistema de Señalización de MAP Quinasas/fisiología , Transducción de Señal/fisiología , Ratones , Ratones Endogámicos C57BL , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Fenotipo
11.
Res Sq ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38853828

RESUMEN

Aging is a prominent risk factor for Alzheimer's disease (AD), but the cellular mechanisms underlying neuronal phenotypes remain elusive. Both accumulation of amyloid plaques and neurofibrillary tangles in the brain1 and age-linked organelle deficits2-7 are proposed as causes of AD phenotypes but the relationship between these events is unclear. Here, we address this question using a transdifferentiated neuron (tNeuron) model directly from human dermal fibroblasts. Patient-derived tNeurons retain aging hallmarks and exhibit AD-linked deficits. Quantitative tNeuron proteomic analyses identify aging and AD-linked deficits in proteostasis and organelle homeostasis, particularly affecting endosome-lysosomal components. The proteostasis and lysosomal homeostasis deficits in aged tNeurons are exacerbated in sporadic and familial AD tNeurons, promoting constitutive lysosomal damage and defects in ESCRT-mediated repair. We find deficits in neuronal lysosomal homeostasis lead to inflammatory cytokine secretion, cell death and spontaneous development of Aß and phospho-Tau deposits. These proteotoxic inclusions co-localize with lysosomes and damage markers and resemble inclusions in brain tissue from AD patients and APP-transgenic mice. Supporting the centrality of lysosomal deficits driving AD phenotypes, lysosome-function enhancing compounds reduce AD-associated cytokine secretion and Aß deposits. We conclude that proteostasis and organelle deficits are upstream initiating factors leading to neuronal aging and AD phenotypes.

12.
Res Sq ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854072

RESUMEN

B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof. T-independent BCR/TLR9 co-stimulation, which drives malignant and autoimmune B-cell states, jointly induced PD-L1 plasma membrane expression, supported by NAD metabolism and oxidative phosphorylation. BCR/TLR9 also highly induced the transaminase BCAT1, which localized to lysosomal membranes to support branched chain amino acid synthesis and mTORC1 hyperactivation. BCAT1 inhibition blunted BCR/TLR9, but not CD40L/IL4-triggered B-cell proliferation, IL10 expression and BCR/TLR pathway-driven lymphoma xenograft outgrowth. These results provide a valuable resource, reveal receptor-mediated immunometabolism remodeling to support key B-cell phenotypes including PD-L1 checkpoint signaling, and identify BCAT1 as a novel B-cell therapeutic target.

13.
Mol Cell Proteomics ; 23(7): 100801, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38880243

RESUMEN

T cell activation is a complex biological process of naive cells maturing into effector cells. Proteomic and phospho-proteomic approaches have provided critical insights into this process, yet it is not always clear how changes in individual proteins or phosphorylation sites have functional significance. Here, we developed the Phosphorylation Integrated Thermal Shift Assay (PITSA) that combines the measurement of protein or phosphorylation site abundance and thermal stability into a single tandem mass tags experiment and apply this method to study T cell activation. We quantified the abundance and thermal stability of over 7500 proteins and 5000 phosphorylation sites and identified significant differences in chromatin-related, TCR signaling, DNA repair, and proliferative phosphoproteins. PITSA may be applied to a wide range of biological contexts to generate hypotheses as to which proteins or phosphorylation sites are functionally regulated in a given system as well as the mechanisms by which this regulation may occur.


Asunto(s)
Activación de Linfocitos , Proteómica , Linfocitos T , Fosforilación , Linfocitos T/metabolismo , Proteómica/métodos , Fosfoproteínas/metabolismo , Animales , Humanos , Estabilidad Proteica , Transducción de Señal , Espectrometría de Masas en Tándem , Ratones
14.
Cell Chem Biol ; 31(7): 1349-1362.e5, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38810651

RESUMEN

Deubiquitylating enzymes (DUBs) remove ubiquitin from proteins thereby regulating their stability or activity. Our understanding of DUB-substrate specificity is limited because DUBs are typically not compared to each other against many physiological substrates. By broadly inhibiting DUBs in Xenopus egg extract, we generated hundreds of ubiquitylated proteins and compared the ability of 30 DUBs to deubiquitylate them using quantitative proteomics. We identified five high-impact DUBs (USP7, USP9X, USP36, USP15, and USP24) that each reduced ubiquitylation of over 10% of the isolated proteins. Candidate substrates of high-impact DUBs showed substantial overlap and were enriched for disordered regions, suggesting this feature may promote substrate recognition. Other DUBs showed lower impact and non-overlapping specificity, targeting distinct non-disordered proteins including complexes such as the ribosome or the proteasome. Altogether our study identifies candidate DUB substrates and defines patterns of functional redundancy and specificity, revealing substrate characteristics that may influence DUB-substrate recognition.


Asunto(s)
Ubiquitina , Especificidad por Sustrato , Animales , Ubiquitina/metabolismo , Ubiquitinación , Enzimas Desubicuitinizantes/metabolismo , Xenopus laevis , Proteínas de Xenopus/metabolismo , Xenopus , Proteómica , Humanos , Proteasas Ubiquitina-Específicas/metabolismo
15.
Cell ; 187(13): 3262-3283.e23, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38815580

RESUMEN

In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.


Asunto(s)
Proteínas de Ciclo Celular , Heterocromatina , N-Metiltransferasa de Histona-Lisina , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Metilación , Metiltransferasas/metabolismo , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , ARN de Hongos/genética , ARN Interferente Pequeño/genética
16.
J Cell Biol ; 223(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38722822

RESUMEN

Cell growth is required for cell cycle progression. The amount of growth required for cell cycle progression is reduced in poor nutrients, which leads to a reduction in cell size. In budding yeast, nutrients can influence cell size by modulating the extent of bud growth, which occurs predominantly in mitosis. However, the mechanisms are unknown. Here, we used mass spectrometry to identify proteins that modulate bud growth in response to nutrient availability. This led to the discovery that nutrients regulate numerous components of the mitotic exit network (MEN), which controls exit from mitosis. A key component of the MEN undergoes gradual multisite phosphorylation during bud growth that is dependent upon bud growth and correlated with the extent of growth. Furthermore, activation of the MEN is sufficient to override a growth requirement for mitotic exit. The data suggest a model in which the MEN ensures that mitotic exit occurs only when an appropriate amount of bud growth has occurred.


Asunto(s)
Mitosis , Saccharomyces cerevisiae , Transducción de Señal , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Nutrientes/metabolismo , Fosforilación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/metabolismo , Saccharomycetales/crecimiento & desarrollo
17.
Sci Adv ; 10(19): eadl4529, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718120

RESUMEN

Polycomb repressive complexes 1 and 2 (PRC1 and 2) are required for heritable repression of developmental genes. The cis- and trans-acting factors that contribute to epigenetic inheritance of mammalian Polycomb repression are not fully understood. Here, we show that, in human cells, ectopically induced Polycomb silencing at initially active developmental genes, but not near ubiquitously expressed housekeeping genes, is inherited for many cell divisions. Unexpectedly, silencing is heritable in cells with mutations in the H3K27me3 binding pocket of the Embryonic Ectoderm Development (EED) subunit of PRC2, which are known to disrupt H3K27me3 recognition and lead to loss of H3K27me3. This mode of inheritance is less stable and requires intact PRC2 and recognition of H2AK119ub1 by PRC1. Our findings suggest that maintenance of Polycomb silencing is sensitive to local genomic context and can be mediated by PRC1-dependent H2AK119ub1 and PRC2 independently of H3K27me3 recognition.


Asunto(s)
Silenciador del Gen , Histonas , Proteínas del Grupo Polycomb , Ubiquitinación , Humanos , Histonas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Proteínas del Grupo Polycomb/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/genética , Genoma Humano , Epigénesis Genética , Mutación
18.
Nature ; 630(8015): 198-205, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38720074

RESUMEN

Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib , Leucemia , Transducción de Señal , Quinasas p21 Activadas , Animales , Humanos , Ratones , Línea Celular , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Citarabina/farmacología , Citarabina/uso terapéutico , Leucemia/tratamiento farmacológico , Leucemia/enzimología , Leucemia/genética , Leucemia/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Quinasas p21 Activadas/antagonistas & inhibidores , Quinasas p21 Activadas/metabolismo , Fosforilación , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Proc Natl Acad Sci U S A ; 121(22): e2401729121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768345

RESUMEN

O-GlcNAc transferase (OGT) is an essential mammalian enzyme that glycosylates myriad intracellular proteins and cleaves the transcriptional coregulator Host Cell Factor 1 to regulate cell cycle processes. Via these catalytic activities as well as noncatalytic protein-protein interactions, OGT maintains cell homeostasis. OGT's tetratricopeptide repeat (TPR) domain is important in substrate recognition, but there is little information on how changing the TPR domain impacts its cellular functions. Here, we investigate how altering OGT's TPR domain impacts cell growth after the endogenous enzyme is deleted. We find that disrupting the TPR residues required for OGT dimerization leads to faster cell growth, whereas truncating the TPR domain slows cell growth. We also find that OGT requires eight of its 13 TPRs to sustain cell viability. OGT-8, like the nonviable shorter OGT variants, is mislocalized and has reduced Ser/Thr glycosylation activity; moreover, its interactions with most of wild-type OGT's binding partners are broadly attenuated. Therefore, although OGT's five N-terminal TPRs are not essential for cell viability, they are required for proper subcellular localization and for mediating many of OGT's protein-protein interactions. Because the viable OGT truncation variant we have identified preserves OGT's essential functions, it may facilitate their identification.


Asunto(s)
N-Acetilglucosaminiltransferasas , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Humanos , Repeticiones de Tetratricopéptidos , Glicosilación , Factor C1 de la Célula Huésped/metabolismo , Factor C1 de la Célula Huésped/genética , Células HEK293 , Dominios Proteicos , Proliferación Celular , Supervivencia Celular , Animales , Unión Proteica
20.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659763

RESUMEN

Nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein 3 (NLRP3) is an innate immune sensor that forms an inflammasome in response to various cellular stressors. Gain-of-function mutations in NLRP3 cause autoinflammatory diseases and NLRP3 signalling itself exacerbates the pathogenesis of many other human diseases. Despite considerable therapeutic interest, the primary drivers of NLRP3 activation remain controversial due to the diverse array of signals that are integrated through NLRP3. Here, we mapped subcellular proteome changes to lysosomes, mitochondrion, EEA1-positive endosomes, and Golgi caused by the NLRP3 inflammasome agonists nigericin and CL097. We identified several common disruptions to retrograde trafficking pathways, including COPI and Shiga toxin-related transport, in line with recent studies. We further characterized mouse NLRP3 trafficking throughout its activation using temporal proximity proteomics, which supports a recent model of NLRP3 recruitment to endosomes during inflammasome activation. Collectively, these findings provide additional granularity to our understanding of the molecular events driving NLRP3 activation and serve as a valuable resource for cell biological research. We have made our proteomics data accessible through an open-access Shiny browser to facilitate future research within the community, available at: https://harperlab.connect.hms.harvard.edu/inflame/. We will display anonymous peer review for this manuscript on pubpub.org (https://harperlab.pubpub.org/pub/nlrp3/) rather than a traditional journal. Moreover, we invite community feedback on the pubpub version of this manuscript, and we will address criticisms accordingly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...