Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 13: 1053591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36468063

RESUMEN

Parkinson's disease (PD) is heterogenous in its presentation, progression and response to therapies. Genetic polymorphisms may account for some of this variability. Several single nucleotide polymorphisms (SNPs) in the brain-derived neurotrophic factor gene BDNF have been associated with differing clinical outcomes from different dopaminergic replacement strategies, and one of these, the rs6265 SNP, has been associated with a milder clinical phenotype in the unmedicated, early-stage of PD. We examined if other BDNF SNPs with potential pharmacogenetic effects also are associated with different rates of disease progression. The Deprenyl And Tocopherol Antioxidative Therapy Of Parkinsonism (DATATOP) study was analyzed retrospectively. DNA samples (n = 217) were genotyped for the BDNF rs908867, rs11030094, rs10501087, rs1157659, and rs1491850 SNPs, and the primary endpoint was time to initiate symptomatic pharmacotherapy. Genotypes were compared using the Cox proportional hazard ratio (HR) with baseline age, sex, site, time since PD diagnosis and rs6265 genotype as covariates. The primary endpoint was associated with a delay with three SNPs: rs10501087 [HR (95% Confidence Interval) = 28.3 (3.6-223.1, p = 0.002) and 7.6 (1.9-29.8, p = 0.004) for T/T and T/C subjects, respectively, vs. C/C subjects], rs1491850 [HR = 3.3 (1.3-8.4, p = 0.04) and 2.8 (1.3-6.4, p = 0.03) for T/T and T/C subjects, respectively, vs. C/C subjects] and rs11030094 [HR = 2.5 (1.1-5.6, p = 0.03) and 2.0 (1.3-6.4, p = 0.03) for A/A and A/G subjects, respectively, vs. G/G subjects]. From the primary endpoint, specific rs10501087, rs1491850, and rs11030094 SNP genotypes are associated with a slower rate of PD progression in the unmedicated state. A prospective clinical trial examining many BDNF SNPs is warranted.

2.
JCI Insight ; 6(5)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33682798

RESUMEN

Parkinson's disease (PD) is a prevalent neurodegenerative disease with no approved disease-modifying therapies. Multiplications, mutations, and single nucleotide polymorphisms in the SNCA gene, encoding α-synuclein (aSyn) protein, either cause or increase risk for PD. Intracellular accumulations of aSyn are pathological hallmarks of PD. Taken together, reduction of aSyn production may provide a disease-modifying therapy for PD. We show that antisense oligonucleotides (ASOs) reduce production of aSyn in rodent preformed fibril (PFF) models of PD. Reduced aSyn production leads to prevention and removal of established aSyn pathology and prevents dopaminergic cell dysfunction. In addition, we address the translational potential of the approach through characterization of human SNCA-targeting ASOs that efficiently suppress the human SNCA transcript in vivo. We demonstrate broad activity and distribution of the human SNCA ASOs throughout the nonhuman primate brain and a corresponding decrease in aSyn cerebral spinal fluid (CSF) levels. Taken together, these data suggest that, by inhibiting production of aSyn, it may be possible to reverse established pathology; thus, these data support the development of SNCA ASOs as a potential disease-modifying therapy for PD and related synucleinopathies.


Asunto(s)
Encéfalo/efectos de los fármacos , Oligonucleótidos Antisentido/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Técnicas de Cultivo de Célula , Líquido Cefalorraquídeo/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Femenino , Humanos , Macaca fascicularis , Masculino , Ratones , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , alfa-Sinucleína/genética
3.
Neurobiol Dis ; 130: 104525, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31276792

RESUMEN

Animal models that accurately recapitulate the accumulation of alpha-synuclein (α-syn) inclusions, progressive neurodegeneration of the nigrostriatal system and motor deficits can be useful tools for Parkinson's disease (PD) research. The preformed fibril (PFF) synucleinopathy model in rodents generally displays these PD-relevant features, however, the magnitude and predictability of these events is far from established. We therefore sought to optimize the magnitude of α-syn accumulation and nigrostriatal degeneration, and to understand the time course of both. Rats were injected unilaterally with different quantities of α-syn PFFs (8 or 16 µg of total protein) into striatal sites selected to concentrate α-syn inclusion formation in the substantia nigra pars compacta (SNpc). Rats displayed an α-syn PFF quantity-dependent increase in the magnitude of ipsilateral SNpc inclusion formation at 2 months and bilateral loss of nigral dopamine neurons at 6 months. Unilateral 16 µg PFF injection also resulted in modest sensorimotor deficits in forelimb adjusting steps associated with degeneration at 6 months. Bilateral injection of 16 µg α-syn PFFs resulted in symmetric bilateral degeneration equivalent to the ipsilateral nigral degeneration observed following unilateral 16 µg PFF injection (~50% loss). Bilateral PFF injections additionally resulted in alterations in several gait analysis parameters. These α-syn PFF parameters can be applied to generate a reproducible synucleinopathy model in rats with which to study pathogenic mechanisms and vet potential disease-modifying therapies.


Asunto(s)
Cuerpo Estriado/metabolismo , Sustancia Negra/metabolismo , Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Ratas , Ratas Endogámicas F344 , Sustancia Negra/patología , Sinucleinopatías/patología
4.
J Neuroinflammation ; 15(1): 129, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29716614

RESUMEN

BACKGROUND: Converging evidence suggests a role for microglia-mediated neuroinflammation in Parkinson's disease (PD). Animal models of PD can serve as a platform to investigate the role of neuroinflammation in degeneration in PD. However, due to features of the previously available PD models, interpretations of the role of neuroinflammation as a contributor to or a consequence of neurodegeneration have remained elusive. In the present study, we investigated the temporal relationship of neuroinflammation in a model of synucleinopathy following intrastriatal injection of pre-formed alpha-synuclein fibrils (α-syn PFFS). METHODS: Male Fischer 344 rats (N = 114) received unilateral intrastriatal injections of α-syn PFFs, PBS, or rat serum albumin with cohorts euthanized at monthly intervals up to 6 months. Quantification of dopamine neurons, total neurons, phosphorylated α-syn (pS129) aggregates, major histocompatibility complex-II (MHC-II) antigen-presenting microglia, and ionized calcium-binding adaptor molecule-1 (Iba-1) immunoreactive microglial soma size was performed in the substantia nigra. In addition, the cortex and striatum were also examined for the presence of pS129 aggregates and MHC-II antigen-presenting microglia to compare the temporal patterns of pSyn accumulation and reactive microgliosis. RESULTS: Intrastriatal injection of α-syn PFFs to rats resulted in widespread accumulation of phosphorylated α-syn inclusions in several areas that innervate the striatum followed by significant loss (~ 35%) of substantia nigra pars compacta dopamine neurons within 5-6 months. The peak magnitudes of α-syn inclusion formation, MHC-II expression, and reactive microglial morphology were all observed in the SN 2 months following injection and 3 months prior to nigral dopamine neuron loss. Surprisingly, MHC-II immunoreactivity in α-syn PFF injected rats was relatively limited during the later interval of degeneration. Moreover, we observed a significant correlation between substantia nigra pSyn inclusion load and number of microglia expressing MHC-II. In addition, we observed a similar relationship between α-syn inclusion load and number of microglia expressing MHC-II in cortical regions, but not in the striatum. CONCLUSIONS: Our results demonstrate that increases in microglia displaying a reactive morphology and MHC-II expression occur in the substantia nigra in close association with peak numbers of pSyn inclusions, months prior to nigral dopamine neuron degeneration, and suggest that reactive microglia may contribute to vulnerability of SNc neurons to degeneration. The rat α-syn PFF model provides an opportunity to examine the innate immune response to accumulation of pathological α-syn in the context of normal levels of endogenous α-syn and provides insight into the earliest neuroinflammatory events in PD.


Asunto(s)
Cuerpos de Lewy/patología , Microglía/patología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Sustancia Negra/patología , alfa-Sinucleína/toxicidad , Animales , Inyecciones Intraventriculares , Cuerpos de Lewy/efectos de los fármacos , Cuerpos de Lewy/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Degeneración Nerviosa/metabolismo , Ratas , Ratas Endogámicas F344 , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , alfa-Sinucleína/administración & dosificación
5.
J Neuroinflammation ; 15(1): 169, 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29843738

RESUMEN

After publication of the original article [1] it was noted that the name of author, D. Luke Fisher, was erroneously typeset in both the PDF and online formats of the manuscript as Luke D. Fisher.

6.
Parkinsonism Relat Disord ; 53: 70-75, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29759928

RESUMEN

INTRODUCTION: Parkinson's disease (PD) progression is heterogeneous. Variants in PD-related genes may alter disease progression or severity. We examined if the single nucleotide variant rs6265 in the gene Bdnf alters clinical phenotype in early-stage, unmedicated PD. METHODS: A retrospective analysis was conducted using data collected in the Deprenyl And Tocopherol Antioxidative Therapy Of Parkinsonism (DATATOP) study. DNA samples (n = 217) were genotyped for the Bdnf rs6265 variant, and the primary endpoint was time to initiate levodopa. The Parkinson's Progression Markers Initiative (PPMI) was used for validation (n = 383). RESULTS: The primary endpoint of time to initiate levodopa was associated with a delay in subjects with two copies of the rs6265 minor (Met66) allele (HR: 4.9; 95% CI: 1.3-18.8). Secondary endpoints were not different among genotypes. PPMI subjects with two Met66 alleles demonstrated significantly lower total and part III Movement Disorder Society - United Parkinson's Disease Rating Scale (MDS-UPDRS) scores at baseline, as well as more tremor-related symptoms, but not a delay in initiation of maintenance pharmacotherapy. CONCLUSIONS: Data from two distinct, unmedicated, early-stage PD cohorts suggest that carrying two copies of the rs6265 Met66 allele (∼4% of the population) is associated with less severity in motor symptoms and potentially a slower rate of progression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Índice de Severidad de la Enfermedad , Anciano , Antiparkinsonianos/efectos adversos , Femenino , Humanos , Levodopa/administración & dosificación , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/tratamiento farmacológico , Polimorfismo de Nucleótido Simple , Estudios Retrospectivos , Factores de Tiempo
7.
Lancet Neurol ; 17(3): 241-250, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29397305

RESUMEN

BACKGROUND: Models of Alzheimer's disease propose a sequence of amyloid ß (Aß) accumulation, hypometabolism, and structural decline that precedes the onset of clinical dementia. These pathological features evolve both temporally and spatially in the brain. In this study, we aimed to characterise where in the brain and when in the course of the disease neuroimaging biomarkers become abnormal. METHODS: Between Jan 1, 2009, and Dec 31, 2015, we analysed data from mutation non-carriers, asymptomatic carriers, and symptomatic carriers from families carrying gene mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or amyloid precursor protein (APP) enrolled in the Dominantly Inherited Alzheimer's Network. We analysed 11C-Pittsburgh Compound B (11C-PiB) PET, 18F-Fluorodeoxyglucose (18F-FDG) PET, and structural MRI data using regions of interest to assess change throughout the brain. We estimated rates of biomarker change as a function of estimated years to symptom onset at baseline using linear mixed-effects models and determined the earliest point at which biomarker trajectories differed between mutation carriers and non-carriers. This study is registered at ClinicalTrials.gov (number NCT00869817) FINDINGS: 11C-PiB PET was available for 346 individuals (162 with longitudinal imaging), 18F-FDG PET was available for 352 individuals (175 with longitudinal imaging), and MRI data were available for 377 individuals (201 with longitudinal imaging). We found a sequence to pathological changes, with rates of Aß deposition in mutation carriers being significantly different from those in non-carriers first (across regions that showed a significant difference, at a mean of 18·9 years [SD 3·3] before expected onset), followed by hypometabolism (14·1 years [5·1] before expected onset), and lastly structural decline (4·7 years [4·2] before expected onset). This biomarker ordering was preserved in most, but not all, regions. The temporal emergence within a biomarker varied across the brain, with the precuneus being the first cortical region for each method to show divergence between groups (22·2 years before expected onset for Aß accumulation, 18·8 years before expected onset for hypometabolism, and 13·0 years before expected onset for cortical thinning). INTERPRETATION: Mutation carriers had elevations in Aß deposition, reduced glucose metabolism, and cortical thinning compared with non-carriers which preceded the expected onset of dementia. Accrual of these pathologies varied throughout the brain, suggesting differential regional and temporal vulnerabilities to Aß, metabolic decline, and structural atrophy, which should be taken into account when using biomarkers in a clinical setting as well as designing and evaluating clinical trials. FUNDING: US National Institutes of Health, the German Center for Neurodegenerative Diseases, and the Medical Research Council Dementias Platform UK.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Salud de la Familia , Adulto , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Compuestos de Anilina/farmacocinética , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Presenilina-1/genética , Presenilina-2/genética , Estadísticas no Paramétricas , Tiazoles/farmacocinética
8.
Neurobiol Dis ; 106: 191-204, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28711409

RESUMEN

The pathology of Parkinson's disease and other synucleinopathies is characterized by the formation of intracellular inclusions comprised primarily of misfolded, fibrillar α-synuclein (α-syn). One strategy to slow disease progression is to prevent the misfolding and aggregation of its native monomeric form. Here we present findings that support the contention that the tricyclic antidepressant compound nortriptyline (NOR) has disease-modifying potential for synucleinopathies. Findings from in vitro aggregation and kinetics assays support the view that NOR inhibits aggregation of α-syn by directly binding to the soluble, monomeric form, and by enhancing reconfiguration of the monomer, inhibits formation of toxic conformations of the protein. We go on to demonstrate that NOR inhibits the accumulation, aggregation and neurotoxicity of α-syn in multiple cell and animal models. These findings suggest that NOR, a compound with established safety and efficacy for treatment of depression, may slow progression of α-syn pathology by directly binding to soluble, native, α-syn, thereby inhibiting pathological aggregation and preserving its normal functions.


Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Nortriptilina/farmacología , Agregación Patológica de Proteínas/tratamiento farmacológico , alfa-Sinucleína/metabolismo , Animales , Animales Modificados Genéticamente , Antidepresivos Tricíclicos/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Drosophila , Escherichia coli , Humanos , Masculino , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Desplegamiento Proteico/efectos de los fármacos , Distribución Aleatoria , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/genética
9.
J Neurosci ; 37(28): 6786-6796, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28607168

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is the most common neurosurgical treatment for Parkinson's disease motor symptoms. In preclinical models, STN DBS provides neuroprotection for substantia nigra (SN) dopamine neurons and increases BDNF in the nigrostriatal system and primary motor cortex. However, whether BDNF signaling in the SN participates in the neuroprotective effects of DBS remains unknown. We demonstrate that STN DBS in male rats activates signaling downstream of tropomyosin receptor kinase type B (trkB), namely, phosphorylation of Akt and ribosomal protein S6, in SN neurons. Long-term trkB blockade abolished STN DBS-mediated neuroprotection of SN neurons following progressive 6-hydroxydopamine lesion and was associated with decreased phosphorylated ribosomal protein S6 immunoreactivity. Acute trkB blockade in rats with stable nigrostriatal denervation attenuated the forelimb akinesia improvement normally induced by STN DBS. These results suggest that STN DBS increases BDNF-trkB signaling to contribute to the neuroprotective and symptomatic efficacy of STN DBS.SIGNIFICANCE STATEMENT Subthalamic nucleus deep brain stimulation (STN DBS) is increasingly used in mid- to late-stage Parkinson's disease (PD) but with an incomplete knowledge of its molecular mechanisms. STN DBS is neuroprotective against neurotoxicants in animal models and increases BDNF. This study is the first to show that BDNF signaling through the cognate tropomyosin receptor kinase type B (trkB) receptor occurs in substantia nigra pars compacta neurons and is required for neuroprotection. In addition, blockade of trkB unexpectedly reduced the functional benefit of STN DBS on a short timescale that is inconsistent with canonical trkB signaling pathways, suggesting a noncanonical role for trkB in STN DBS-mediated behavioral effects. Together, these data implicate trkB signaling in the symptomatic efficacy and disease-modifying potential of STN DBS.


Asunto(s)
Estimulación Encefálica Profunda , Regeneración Nerviosa/fisiología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Proteínas Tirosina Quinasas/metabolismo , Núcleo Subtalámico/fisiopatología , Animales , Masculino , Enfermedad de Parkinson/diagnóstico , Ratas , Ratas Sprague-Dawley , Receptor trkB , Recuperación de la Función/fisiología , Transducción de Señal
10.
Mol Ther Methods Clin Dev ; 3: 16082, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27933309

RESUMEN

Therapeutic protein delivery using viral vectors has shown promise in preclinical models of Parkinson's disease (PD) but clinical trial success remains elusive. This may partially be due to a failure to include advanced age as a covariate despite aging being the primary risk factor for PD. We investigated transgene expression following intracerebral injections of recombinant adeno-associated virus pseudotypes 2/2 (rAAV2/2), 2/5 (rAAV2/5), 2/9 (rAAV2/9), and lentivirus (LV) expressing green fluorescent protein (GFP) in aged versus young adult rats. Both rAAV2/2 and rAAV2/5 yielded lower GFP expression following injection to either the aged substantia nigra or striatum. rAAV2/9-mediated GFP expression was deficient in the aged striatonigral system but displayed identical transgene expression between ages in the nigrostriatal system. Young and aged rats displayed equivalent GFP levels following LV injection to the striatonigral system but LV-delivered GFP was deficient in delivering GFP to the aged nigrostriatal system. Notably, age-related transgene expression deficiencies revealed by protein quantitation were poorly predicted by GFP-immunoreactive cell counts. Further, in situ hybridization for the viral CßA promoter revealed surprisingly limited tropism for astrocytes compared to neurons. Our results demonstrate that aging is a critical covariate to consider when designing gene therapy approaches for PD.

11.
Neurobiol Dis ; 82: 185-199, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26093169

RESUMEN

Previous studies demonstrate that intrastriatal injections of fibrillar alpha-synuclein (α-syn) into mice induce Parkinson's disease (PD)-like Lewy body (LB) pathology formed by aggregated α-syn in anatomically interconnected regions and significant nigrostriatal degeneration. The aim of the current study was to evaluate whether exogenous mouse α-syn pre-formed fibrils (PFF) injected into the striatum of rats would result in accumulation of LB-like intracellular inclusions and nigrostriatal degeneration. Sprague-Dawley rats received unilateral intrastriatal injections of either non-fibrillized recombinant α-syn or PFF mouse α-syn in 1- or 2- sites and were euthanized at 30, 60 or 180 days post-injection (pi). Both non-fibrillized recombinant α-syn and PFF α-syn injections resulted in phosphorylated α-syn intraneuronal accumulations (i.e., diffuse Lewy neurite (LN)- and LB-like inclusions) with significantly greater accumulations following PFF injection. LB-like inclusions were observed in several areas that innervate the striatum, most prominently the frontal and insular cortices, the amygdala, and the substantia nigra pars compacta (SNpc). α-Syn accumulations co-localized with ubiquitin, p62, and were thioflavin-S-positive and proteinase-k resistant, suggesting that PFF-induced pathology exhibits properties similar to human LBs. Although α-syn inclusions within the SNpc remained ipsilateral to striatal injection, we observed bilateral reductions in nigral dopamine neurons at the 180-day time-point in both the 1- and 2-site PFF injection paradigms. PFF injected rats exhibited bilateral reductions in striatal dopaminergic innervation at 60 and 180 days and bilateral decreases in homovanillic acid; however, dopamine reduction was observed only in the striatum ipsilateral to PFF injection. Although the level of dopamine asymmetry in PFF injected rats at 180 days was insufficient to elicit motor deficits in amphetamine-induced rotations or forelimb use in the cylinder task, significant disruption of ultrasonic vocalizations was observed. Taken together, our findings demonstrate that α-syn PFF are sufficient to seed the pathological conversion and propagation of endogenous α-syn to induce a progressive, neurodegenerative model of α-synucleinopathy in rats.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Degeneración Nerviosa/patología , Sustancia Negra/efectos de los fármacos , alfa-Sinucleína/farmacología , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Degeneración Nerviosa/metabolismo , Ratas , Ratas Sprague-Dawley , Sustancia Negra/metabolismo , Sustancia Negra/patología , Vocalización Animal/efectos de los fármacos , alfa-Sinucleína/metabolismo
12.
Neurobiol Dis ; 77: 191-203, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25771169

RESUMEN

Advanced age is the primary risk factor for Parkinson's disease (PD). In PD patients and rodent models of PD, advanced age is associated with inferior symptomatic benefit following intrastriatal grafting of embryonic dopamine (DA) neurons, a pattern believed to result from decreased survival and reinnervation provided by grafted neurons in the aged host. To help understand the capacity of the aged, parkinsonian striatum to be remodeled with new DA terminals, we used a grafting model and examined whether increasing the number of grafted DA neurons in aged rats would translate to enhanced behavioral recovery. Young (3months), middle-aged (15months), and aged (22months) parkinsonian rats were grafted with proportionately increasing numbers of embryonic ventral mesencephalic (VM) cells to evaluate whether the limitations of the graft environment in subjects of advancing age can be offset by increased numbers of transplanted neurons. Despite robust survival of grafted neurons in aged rats, reinnervation of striatal neurons remained inferior and amelioration of levodopa-induced dyskinesias (LID) was delayed or absent. This study demonstrates that: 1) counter to previous evidence, under certain conditions the aged striatum can support robust survival of grafted DA neurons; and 2) unknown factors associated with the aged striatum result in inferior integration of graft and host, and continue to present obstacles to full therapeutic efficacy of DA cell-based therapy in this model of aging.


Asunto(s)
Envejecimiento , Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/fisiología , Enfermedad de Parkinson/cirugía , Recuperación de la Función/fisiología , Trasplante de Células Madre/métodos , Anfetamina/farmacología , Animales , Cuerpo Estriado/cirugía , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Discinesia Inducida por Medicamentos/fisiopatología , Embrión de Mamíferos , Lateralidad Funcional , Levodopa/efectos adversos , Neuritas/fisiología , Oxidopamina/toxicidad , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Endogámicas F344 , Sustancia P/metabolismo
13.
Exp Neurol ; 266: 11-21, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25681575

RESUMEN

In addition to alleviating depression, trophic responses produced by antidepressants may regulate neural plasticity in the diseased brain, which not only provides symptomatic benefit but also potentially slows the rate of disease progression in Parkinson's disease (PD). Recent in vitro and in vivo data provide evidence that neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) may be key mediators of the therapeutic response to antidepressants. As such, we conducted a cross-sectional time-course study to determine whether antidepressant-mediated changes in neurotrophic factors occur in relevant brain regions in response to amitriptyline (AMI) treatment before and after intrastriatal 6-hydroxydopamine (6OHDA). Adult male Wistar rats were divided into seven cohorts and given daily injections (i.p.) of AMI (5mg/kg) or saline throughout the duration of the study. In parallel, various cohorts of intact or parkinsonian animals were sacrificed at specific time points to determine the impact of AMI treatment on trophic factor levels in the intact and degenerating nigrostriatal system. The left and right hemispheres of the substantia nigra, striatum, frontal cortex, piriform cortex, hippocampus, and anterior cingulate cortex were dissected, and BDNF and GDNF levels were measured with ELISA. Results show that chronic AMI treatment elicits effects in multiple brain regions and differentially regulates levels of BDNF and GDNF depending on the region. Additionally, AMI halts the progressive degeneration of dopamine (DA) neurons elicited by an intrastriatal 6-OHDA lesion. Taken together, these results suggest that AMI treatment elicits significant trophic changes important to DA neuron survival within both the intact and degenerating nigrostriatal system.


Asunto(s)
Amitriptilina/farmacología , Antidepresivos Tricíclicos/farmacología , Degeneración Nerviosa/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Sustancia Negra/metabolismo , Animales , Química Encefálica/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Masculino , Oxidopamina , Ratas , Ratas Wistar , Sustancia Negra/efectos de los fármacos , Simpatectomía Química , Simpaticolíticos
14.
Neuropsychopharmacology ; 40(4): 874-83, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25267343

RESUMEN

In addition to alleviating depression, long-term adaptive changes induced by antidepressants may regulate neural plasticity in the diseased brain, providing symptomatic and disease-modifying effects in Parkinson's disease. The present study investigated whether chronic treatment with a frequently prescribed tricyclic antidepressant was neuroprotective in a 6-hydroxydopamine (6-OHDA) rat model of parkinsonism. In lesioned animals, chronic amitriptyline (AMI; 5 mg/kg) treatment resulted in a significant sparing of tyrosine hydroxylase-immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) compared with saline treatment. Additionally, striatal fibers were preserved and functional motor deficits were attenuated. Although 6-OHDA lesions did not induce anhedonia in our model, the dose of AMI utilized had antidepressant activity as demonstrated by reduced immobility. Recent in vitro and in vivo data provide evidence that trophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) may be key mediators of the therapeutic response to antidepressants. Therefore, we investigated whether AMI mediates changes in these specific trophic factors in the intact and degenerating nigrostriatal system. Chronic AMI treatment mediates an increase in nigral BDNF both before and during ongoing degeneration, suggesting it may contribute to neuroprotection observed in vivo. However, over time, AMI reduced BDNF levels in the striatum, indicating tricyclic therapy differentially regulates trophic factors within the nigrostriatal system. Combined, these results suggest that AMI treatment attenuates dopamine neuron loss and elicits significant trophic changes relevant to dopamine neuron survival.


Asunto(s)
Amitriptilina/uso terapéutico , Analgésicos no Narcóticos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cuerpo Estriado/patología , Enfermedades Neurodegenerativas , Trastornos Parkinsonianos/complicaciones , Sustancia Negra/patología , Adrenérgicos/toxicidad , Animales , Modelos Animales de Enfermedad , Preferencias Alimentarias , Regulación de la Expresión Génica/efectos de los fármacos , Suspensión Trasera , Masculino , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Wistar , Sacarina/administración & dosificación , Tirosina 3-Monooxigenasa/metabolismo
15.
J Neurochem ; 129(5): 884-94, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24494600

RESUMEN

Aggregate-prone mutant proteins, such as α-synuclein and huntingtin, play a prominent role in the pathogenesis of various neurodegenerative disorders; thus, it has been hypothesized that reducing the aggregate-prone proteins may be a beneficial therapeutic strategy for these neurodegenerative disorders. Here, we identified two previously described glucosylceramide (GlcCer) synthase inhibitors, DL-threo-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol and Genz-123346(Genz), as enhancers of autophagy flux. We also demonstrate that GlcCer synthase inhibitors exert their effects on autophagy by inhibiting AKT-mammalian target of rapamycin (mTOR) signaling. More importantly, siRNA knock down of GlcCer synthase had the similar effect as pharmacological inhibition, confirming the on-target effect. In addition, we discovered that inhibition of GlcCer synthase increased the number and size of lysosomal/late endosomal structures. Although inhibition of GlcCer synthase decreases levels of mutant α-synuclein in neurons, it does so, according to our data, through autophagy-independent mechanisms. Our findings demonstrate a direct link between glycosphingolipid biosynthesis and autophagy in primary neurons, which may represent a novel pathway with potential therapeutic value for the treatment of Parkinson's disease. Inhibition of GlcCer synthase enhances autophagy by inhibiting AKT-mTOR signaling, and increases the number and size of lysosomal/late endosomal structures. Furthermore, inhibition of GlcCer synthase decreased levels of mutant α-synuclein in neurons, which may represent a potential therapeutic target for Parkinson's disease.


Asunto(s)
Autofagia/fisiología , Inhibidores Enzimáticos/farmacología , Glucosiltransferasas/antagonistas & inhibidores , Neuronas/fisiología , Animales , Western Blotting , Células Cultivadas , Dioxanos/farmacología , Femenino , Glicoesfingolípidos/biosíntesis , Células HEK293 , Humanos , Masculino , Meperidina/análogos & derivados , Meperidina/farmacología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteína Oncogénica v-akt/metabolismo , Enfermedad de Parkinson/genética , Fosforilación , Cultivo Primario de Células , Pirrolidinas/farmacología , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
PLoS One ; 8(8): e70274, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936403

RESUMEN

Parkinson's disease (PD) pathology is characterized by the formation of intra-neuronal inclusions called Lewy bodies, which are comprised of alpha-synuclein (α-syn). Duplication, triplication or genetic mutations in α-syn (A53T, A30P and E46K) are linked to autosomal dominant PD; thus implicating its role in the pathogenesis of PD. In both PD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of protein aggregates (i.e., α-syn) and neurodegeneration. Characterization of the timing and nature of symptomatic dysfunction is important for understanding the impact of α-syn on disease progression. Furthermore, this knowledge is essential for identifying pathways and molecular targets for therapeutic intervention. To this end, we examined various functional and morphological endpoints in the transgenic mouse model expressing the human A53T α-syn variant directed by the mouse prion promoter at specific ages relating to disease progression (2, 6 and 12 months of age). Our findings indicate A53T mice develop fine, sensorimotor, and synaptic deficits before the onset of age-related gross motor and cognitive dysfunction. Results from open field and rotarod tests show A53T mice develop age-dependent changes in locomotor activity and reduced anxiety-like behavior. Additionally, digigait analysis shows these mice develop an abnormal gait by 12 months of age. A53T mice also exhibit spatial memory deficits at 6 and 12 months, as demonstrated by Y-maze performance. In contrast to gross motor and cognitive changes, A53T mice display significant impairments in fine- and sensorimotor tasks such as grooming, nest building and acoustic startle as early as 1-2 months of age. These mice also show significant abnormalities in basal synaptic transmission, paired-pulse facilitation and long-term depression (LTD). Combined, these data indicate the A53T model exhibits early- and late-onset behavioral and synaptic impairments similar to PD patients and may provide useful endpoints for assessing novel therapeutic interventions for PD.


Asunto(s)
Conducta Animal/fisiología , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , alfa-Sinucleína/genética , Acústica , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Ansiedad/complicaciones , Peso Corporal/genética , Cognición , Aseo Animal , Hipocampo/fisiopatología , Humanos , Masculino , Memoria , Ratones , Actividad Motora/genética , Comportamiento de Nidificación , Plasticidad Neuronal/genética , Fenotipo , Equilibrio Postural , Reflejo de Sobresalto/genética , Conducta Espacial/fisiología , Sinapsis/fisiología , Transmisión Sináptica/genética , Factores de Tiempo
17.
Mov Disord ; 27(7): 880-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22555881

RESUMEN

This study examined whether antidepressants delay the need for dopaminergic therapy or change the degree of motor impairment and disability in a population of early Parkinson's disease (PD) patients. Preclinical studies have indicated that antidepressants modulate signaling pathways involved in cell survival and plasticity, suggesting they may serve to both treat PD-associated depression and slow disease progression. A patient-level meta-analysis included 2064 patients from the treatment and placebo arms of the following trials: FS1, FS-TOO, ELLDOPA, QE2, TEMPO, and PRECEPT. Depression severity was determined at baseline, and antidepressant use was reported in a medication log each visit. Kaplan-Meier curves and time-dependent Cox proportional hazards models determined associations between depression severity and antidepressant use with the primary outcome, time to initiation of dopaminergic therapy. ANCOVAs determined associations with the secondary outcome, degree of motor impairment and disability, reported as annualized change in UPDRS scores from baseline to final visit. When controlling for baseline depression, the initiation of dopaminergic therapy was delayed for subjects taking tricyclic antidepressants compared with those not taking antidepressants. No significant differences were found in UPDRS scores for subjects taking antidepressants compared with those not taking antidepressants. Tricyclic antidepressants are associated with a delay in reaching the end point of need to start dopaminergic therapy. The lack of change in overall UPDRS scores suggests the delay was not attributable to symptomatic effects.


Asunto(s)
Antidepresivos Tricíclicos/uso terapéutico , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/etiología , Dopaminérgicos/uso terapéutico , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Anciano , Estudios de Cohortes , Trastorno Depresivo/mortalidad , Evaluación de la Discapacidad , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/mortalidad , Escalas de Valoración Psiquiátrica , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Análisis de Supervivencia , Factores de Tiempo
18.
J Comp Neurol ; 515(1): 102-15, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19399899

RESUMEN

Realistically, future stem cell therapies for neurological conditions including Parkinson's disease (PD) will most probably entail combination treatment strategies, involving both the stimulation of endogenous cells and transplantation. Therefore, this study investigates these two modes of neural precursor cell (NPC) therapy in concert in order to determine their interrelationships in a rat PD model. Human placental alkaline phosphatase (hPAP)-labeled NPCs were transplanted unilaterally into host rats which were subsequently infused ipsilaterally with 6-hydroxydopamine (6-OHDA). The reaction of host NPCs to the transplantation and 6-OHDA was tracked by bromodeoxyuridine (BrdU) labeling. Two weeks after transplantation, in animals transplanted with NPCs we found evidence of elevated host subventricular zone NPC proliferation, neurogenesis, and migration to the graft site. In these animals, we also observed a significant preservation of striatal tyrosine hydroxylase (TH) expression and substantia nigra TH cell number. We have seen no evidence that neuroprotection is a product of dopamine neuron replacement by NPC-derived cells. Rather, the NPCs expressed glial cell line-derived neurotrophic factor (GDNF), sonic hedgehog (Shh), and stromal cell-derived factor 1 alpha (SDF1alpha), providing a molecular basis for the observed neuroprotection and endogenous NPC response to transplantation. In summary, our data suggests plausible synergy between exogenous and endogenous NPC actions, and that NPC implantation before the 6-OHDA insult can create a host microenvironment conducive to stimulation of endogenous NPCs and protection of mature nigral neurons.


Asunto(s)
Trasplante de Tejido Encefálico/métodos , Encéfalo/cirugía , Diferenciación Celular/fisiología , Trastornos Parkinsonianos/cirugía , Trasplante de Células Madre/métodos , Células Madre/fisiología , Animales , Biomarcadores , Encéfalo/citología , Encéfalo/metabolismo , Movimiento Celular/fisiología , Proliferación Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Modelos Animales de Enfermedad , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Proteínas Hedgehog/metabolismo , Regeneración Nerviosa/fisiología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Neurotoxinas , Oxidopamina , Trastornos Parkinsonianos/fisiopatología , Ratas , Ratas Endogámicas F344 , Ratas Transgénicas , Células Madre/citología
19.
Neuropharmacology ; 55(5): 851-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18655796

RESUMEN

The current study examined whether modest concentrations of MDMA could increase the survival and/or neurite outgrowth of fetal midbrain dopamine (DA) neurons in vitro since increased DA neurite outgrowth has been previously observed in vivo from prenatal exposure. MDMA concentrations in fetal brain were quantified to determine relevant in vivo concentrations to employ in vitro. A dose response study in vitro demonstrated that MDMA, at concentrations observed in vivo, resulted in increased, DA-specific, neuron survival. Higher doses resulted in non-specific neurotoxicity. MDMA application immediately after culture establishment resulted in greater survival than delayed application, however both were superior to control. MDMA significantly increased the expression of the slc6a3 gene (dopamine transporter; DAT) in culture. Co-application of the DAT reuptake inhibitor methylphenidate (MPH) with MDMA attenuated this effect. Progressive reductions in MPH concentrations restored the MDMA-induced survival effect. This suggests that MDMA's action at DAT mediates the survival effect. Neurite density per neuron was unaffected by MDMA in vitro suggesting that MDMA promotes DA neuron survival but not neurite outgrowth in culture. Finally, animals prenatally exposed to MDMA and examined on postnatal day 35 showed an increase in tyrosine hydroxylase-positive (TH+) neurons in the substantia nigra but not in the ventral tegmental area. These data suggest that during development, MDMA can increase the survival of DA neurons through its action at its transporter. Understanding how MDMA increases DA neuron survival may provide insight into normal DA neuron loss during development.


Asunto(s)
Dopamina/metabolismo , Alucinógenos/farmacología , Mesencéfalo/citología , N-Metil-3,4-metilenodioxianfetamina/farmacología , Neuronas/efectos de los fármacos , Análisis de Varianza , Animales , Animales Recién Nacidos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Masculino , Mesencéfalo/metabolismo , Metilfenidato/metabolismo , Metilfenidato/farmacología , Neuritas/efectos de los fármacos , Neuronas/citología , Neuronas/fisiología , Embarazo , Ratas , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/metabolismo
20.
J Neurosci Methods ; 166(1): 13-9, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17706789

RESUMEN

The poor survival rate (5-20%) of grafted embryonic dopamine (DA) neurons is one of the primary factors preventing cell replacement from becoming a viable treatment for Parkinson's disease. Previous studies have demonstrated that graft volume impacts grafted DA neuron survival, indicating that transplant parameters influence survival rates. However, the effects of mesencephalic cell concentration on grafted DA neuron survival have not been investigated. The current study compares the survival rates of DA neurons in grafts of varying concentrations. Mesencephalic cell suspensions derived from E14 Fisher 344 rat pups were concentrated to 25,000, 50,000, 100,000 and 200,000 cells/microl and transplanted into two 0.5 microl sites in the 6-OHDA-denervated rat striatum. Animals were sacrificed 10 days and 6 weeks post-transplantation for histochemical analysis of striatal grafts. The absolute number of DA neurons per graft increased proportionally to the total number of cells transplanted. However, our results show that the 200,000 cells/microl group exhibited significantly higher survival rates (5.48+/-0.83%) compared to the 25,000 cells/microl (2.81+/-0.39%) and 50,000 cells/microl (3.36+/-0.51%) groups (p=0.02 and 0.03, respectively). Soma size of grafted DA neurons in the 200,000 cells/microl group was significantly larger than that of the 25,000 cells/microl (p<0.0001) and 50,000 cells/microl groups (p=0.004). In conclusion, increasing the concentration of mesencephalic cells prior to transplantation, augments the survival and functionality of grafted DA neurons. These data have the potential to identify optimal transplantation parameters that can be applied to procedures utilizing stem cells, neural progenitors, and primary mesencephalic cells.


Asunto(s)
Trasplante de Tejido Encefálico/métodos , Dopamina/metabolismo , Trasplante de Tejido Fetal/métodos , Mesencéfalo/trasplante , Neuronas/trasplante , Enfermedad de Parkinson/terapia , Tirosina 3-Monooxigenasa/metabolismo , Animales , Trasplante de Tejido Encefálico/normas , Recuento de Células , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/normas , Proliferación Celular , Supervivencia Celular/fisiología , Células Cultivadas , Cuerpo Estriado/citología , Cuerpo Estriado/fisiopatología , Cuerpo Estriado/cirugía , Desnervación , Trasplante de Tejido Fetal/normas , Inmunohistoquímica , Masculino , Mesencéfalo/citología , Mesencéfalo/embriología , Neuronas/citología , Neuronas/metabolismo , Oxidopamina , Ratas , Ratas Endogámicas F344 , Trasplante de Células Madre/métodos , Trasplante de Células Madre/normas , Sustancia Negra/citología , Sustancia Negra/embriología , Sustancia Negra/trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA