Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Res Sq ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38978568

RESUMEN

Birt-Hogg-Dubé (BHD) syndrome patients are uniquely susceptible to all renal tumour subtypes. The underlying mechanism of carcinogenesis is unclear. To study cancer development in BHD, we used human proximal kidney (HK2) cells and found that long-term folliculin (FLCN) knockdown was required to increase their tumorigenic potential, forming larger spheroids in non-adherent conditions. Transcriptomic and proteomic analysis uncovered links between FLCN, cell cycle control and the DNA damage response (DDR) machinery. HK2 cells lacking FLCN had an altered transcriptome profile with cell cycle control gene enrichment. G1/S cell cycle checkpoint signaling was compromised with heightened protein levels of cyclin D1 (CCND1) and hyperphosphorylation of retinoblastoma 1 (RB1). A FLCN interactome screen uncovered FLCN binding to DNA-dependent protein kinase (DNA-PK). This novel interaction was reversed in an irradiation-responsive manner. Knockdown of FLCN in HK2 cells caused a marked elevation of γH2AX and RB1 phosphorylation. Both CCND1 and RB1 phosphorylation remained raised during DNA damage, showing an association with defective cell cycle control with FLCN knockdown. Furthermore, Flcn-knockdown C. elegans were defective in cell cycle arrest by DNA damage. This work implicates that long-term FLCN loss and associated cell cycle defects in BHD patients could contribute to their increased risk of cancer.

2.
STAR Protoc ; 3(3): 101475, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35755125

RESUMEN

EGFR cell surface density, stability, internalization, and recycling can be measured by cell surface ELISA (cs-ELISA). Performing this experiment on ice impedes receptor internalization; thus the physiological cell surface receptor levels can be measured by cs-ELISA. Cell surface EGFR levels are detected by measuring Amplex Red fluorescence intensity. Although cell surface receptor levels can be measured by flow cytometry, cs-ELISA does not include cell dissociation steps that might affect cell surface receptor levels. For complete details on the use and execution of this protocol, please refer to Kazan et al. (2019).


Asunto(s)
Receptores ErbB , Receptores de Superficie Celular , Membrana Celular/metabolismo , Ensayo de Inmunoadsorción Enzimática , Receptores ErbB/metabolismo , Citometría de Flujo , Receptores de Superficie Celular/metabolismo
3.
Oncogene ; 41(12): 1701-1717, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35110681

RESUMEN

Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias de la Mama Triple Negativas , Anticuerpos Monoclonales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Inmunoconjugados/efectos adversos , Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Factores de Transcripción , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
4.
Oncotarget ; 13: 173-181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35070081

RESUMEN

The 7th Birt-Hogg-Dubé (BHD) International Symposium convened virtually in October 2021. The meeting attracted more than 200 participants internationally and highlighted recent findings in a variety of areas, including genetic insight and molecular understanding of BHD syndrome, structure and function of the tumor suppressor Folliculin (FLCN), therapeutic and clinical advances as well as patients' experiences living with this malady.


Asunto(s)
Síndrome de Birt-Hogg-Dubé , Síndrome de Birt-Hogg-Dubé/genética , Humanos
5.
iScience ; 24(11): 103274, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34761192

RESUMEN

Internalized and ubiquitinated signaling receptors are silenced by their intraluminal budding into multivesicular bodies aided by the endosomal sorting complexes required for transport (ESCRT) machinery. HD-PTP, an ESCRT protein, forms complexes with ESCRT-0, -I and -III proteins, and binds to Endofin, a FYVE-domain protein confined to endosomes with poorly understood roles. Using proximity biotinylation, we showed that Endofin forms a complex with ESCRT constituents and Endofin depletion increased integrin α5-and EGF-receptor plasma membrane density and stability by hampering their lysosomal delivery. This coincided with sustained receptor signaling and increased cell migration. Complementation of Endofin- or HD-PTP-depleted cells with wild-type Endofin or HD-PTP, but not with mutants harboring impaired Endofin/HD-PTP association or cytosolic Endofin, restored EGFR lysosomal delivery. Endofin also promoted Hrs indirect interaction with HD-PTP. Jointly, our results indicate that Endofin is required for HD-PTP and ESCRT-0 interdependent sorting of ubiquitinated transmembrane cargoes to ensure efficient receptor desensitization and lysosomal delivery.

6.
J Clin Invest ; 131(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34779410

RESUMEN

Growing tumors exist in metabolically compromised environments that require activation of multiple pathways to scavenge nutrients to support accelerated rates of growth. The folliculin (FLCN) tumor suppressor complex (FLCN, FNIP1, FNIP2) is implicated in the regulation of energy homeostasis via 2 metabolic master kinases: AMPK and mTORC1. Loss-of-function mutations of the FLCN tumor suppressor complex have only been reported in renal tumors in patients with the rare Birt-Hogg-Dube syndrome. Here, we revealed that FLCN, FNIP1, and FNIP2 are downregulated in many human cancers, including poor-prognosis invasive basal-like breast carcinomas where AMPK and TFE3 targets are activated compared with the luminal, less aggressive subtypes. FLCN loss in luminal breast cancer promoted tumor growth through TFE3 activation and subsequent induction of several pathways, including autophagy, lysosomal biogenesis, aerobic glycolysis, and angiogenesis. Strikingly, induction of aerobic glycolysis and angiogenesis in FLCN-deficient cells was dictated by the activation of the PGC-1α/HIF-1α pathway, which we showed to be TFE3 dependent, directly linking TFE3 to Warburg metabolic reprogramming and angiogenesis. Conversely, FLCN overexpression in invasive basal-like breast cancer models attenuated TFE3 nuclear localization, TFE3-dependent transcriptional activity, and tumor growth. These findings support a general role of a deregulated FLCN/TFE3 tumor suppressor pathway in human cancers.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Neoplasias de la Mama/patología , Neovascularización Patológica/prevención & control , Proteínas Proto-Oncogénicas/fisiología , Proteínas Supresoras de Tumor/fisiología , Efecto Warburg en Oncología , Proteínas Quinasas Activadas por AMP/fisiología , Línea Celular Tumoral , Femenino , Humanos , Fosforilación Oxidativa
7.
Sci Rep ; 11(1): 21268, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711912

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), which is characterized by triglyceride accumulation, inflammation, and fibrosis. No pharmacological agents are currently approved to treat these conditions, but it is clear now that modulation of lipid synthesis and autophagy are key biological mechanisms that could help reduce or prevent these liver diseases. The folliculin (FLCN) protein has been recently identified as a central regulatory node governing whole body energy homeostasis, and we hypothesized that FLCN regulates highly metabolic tissues like the liver. We thus generated a liver specific Flcn knockout mouse model to study its role in liver disease progression. Using the methionine- and choline-deficient diet to mimic liver fibrosis, we demonstrate that loss of Flcn reduced triglyceride accumulation, fibrosis, and inflammation in mice. In this aggressive liver disease setting, loss of Flcn led to activation of transcription factors TFEB and TFE3 to promote autophagy, promoting the degradation of intracellular lipid stores, ultimately resulting in reduced hepatocellular damage and inflammation. Hence, the activity of FLCN could be a promising target for small molecule drugs to treat liver fibrosis by specifically activating autophagy. Collectively, these results show an unexpected role for Flcn in fatty liver disease progression and highlight new potential treatment strategies.


Asunto(s)
Autofagia/genética , Hepatitis/etiología , Hepatitis/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Transducción de Señal , Proteínas Supresoras de Tumor/deficiencia , Animales , Biomarcadores , Biopsia , Biología Computacional , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Hepatitis/patología , Inmunohistoquímica , Cirrosis Hepática/patología , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transcriptoma
8.
Front Cell Dev Biol ; 9: 667311, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981707

RESUMEN

Folliculin (FLCN) is a tumor suppressor gene responsible for the inherited Birt-Hogg-Dubé (BHD) syndrome, which affects kidneys, skin and lungs. FLCN is a highly conserved protein that forms a complex with folliculin interacting proteins 1 and 2 (FNIP1/2). Although its sequence does not show homology to known functional domains, structural studies have determined a role of FLCN as a GTPase activating protein (GAP) for small GTPases such as Rag GTPases. FLCN GAP activity on the Rags is required for the recruitment of mTORC1 and the transcriptional factors TFEB and TFE3 on the lysosome, where mTORC1 phosphorylates and inactivates these factors. TFEB/TFE3 are master regulators of lysosomal biogenesis and function, and autophagy. By this mechanism, FLCN/FNIP complex participates in the control of metabolic processes. AMPK, a key regulator of catabolism, interacts with FLCN/FNIP complex. FLCN loss results in constitutive activation of AMPK, which suggests an additional mechanism by which FLCN/FNIP may control metabolism. AMPK regulates the expression and activity of the transcriptional cofactors PGC1α/ß, implicated in the control of mitochondrial biogenesis and oxidative metabolism. In this review, we summarize our current knowledge of the interplay between mTORC1, FLCN/FNIP, and AMPK and their implications in the control of cellular homeostasis through the transcriptional activity of TFEB/TFE3 and PGC1α/ß. Other pathways and cellular processes regulated by FLCN will be briefly discussed.

9.
Autophagy ; 17(12): 3957-3975, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33734022

RESUMEN

Increased macroautophagy/autophagy and lysosomal activity promote tumor growth, survival and chemo-resistance. During acute starvation, autophagy is rapidly engaged by AMPK (AMP-activated protein kinase) activation and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) inhibition to maintain energy homeostasis and cell survival. TFEB (transcription factor E3) and TFE3 (transcription factor binding to IGHM enhancer 3) are master transcriptional regulators of autophagy and lysosomal activity and their cytoplasm/nuclear shuttling is controlled by MTORC1-dependent multisite phosphorylation. However, it is not known whether and how the transcriptional activity of TFEB or TFE3 is regulated. We show that AMPK mediates phosphorylation of TFEB and TFE3 on three serine residues, leading to TFEB and TFE3 transcriptional activity upon nutrient starvation, FLCN (folliculin) depletion and pharmacological manipulation of MTORC1 or AMPK. Collectively, we show that MTORC1 specifically controls TFEB and TFE3 cytosolic retention, whereas AMPK is essential for TFEB and TFE3 transcriptional activity. This dual and opposing regulation of TFEB and TFE3 by MTORC1 and AMPK is reminiscent of the regulation of another critical regulator of autophagy, ULK1 (unc-51 like autophagy activating kinase 1). Surprisingly, we show that chemoresistance is mediated by AMPK-dependent activation of TFEB, which is abolished by pharmacological inhibition of AMPK or mutation of serine 466, 467 and 469 to alanine residues within TFEB. Altogether, we show that AMPK is a key regulator of TFEB and TFE3 transcriptional activity, and we validate AMPK as a promising target in cancer therapy to evade chemotherapeutic resistance.Abbreviations: ACACA: acetyl-CoA carboxylase alpha; ACTB: actin beta; AICAR: 5-aminoimidazole-4-carboxamide ribonucleotide; AMPK: AMP-activated protein kinase; AMPKi: AMPK inhibitor, SBI-0206965; CA: constitutively active; CARM1: coactivator-associated arginine methyltransferase 1; CFP: cyan fluorescent protein; CLEAR: coordinated lysosomal expression and regulation; DKO: double knock-out; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DQ-BSA: self-quenched BODIPY® dye conjugates of bovine serum albumin; EBSS: Earle's balanced salt solution; FLCN: folliculin; GFP: green fluorescent protein; GST: glutathione S-transferases; HD: Huntington disease; HTT: huntingtin; KO: knock-out; LAMP1: lysosomal associated membrane protein 1; MEF: mouse embryonic fibroblasts; MITF: melanocyte inducing transcription factor; MTORC1: MTOR complex 1; PolyQ: polyglutamine; RPS6: ribosomal protein S6; RT-qPCR: reverse transcription quantitative polymerase chain reaction; TCL: total cell lysates; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; TKO: triple knock-out; ULK1: unc-51 like autophagy activating kinase 1.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Fibroblastos/metabolismo , Humanos , Lisosomas/metabolismo , Ratones , Fosforilación , Transducción de Señal/genética , Activación Transcripcional
10.
FEBS J ; 287(19): 4198-4220, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32484316

RESUMEN

Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.


Asunto(s)
Monoéster Fosfórico Hidrolasas , Proteínas/metabolismo , Animales , Humanos
11.
Sci Rep ; 9(1): 11945, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420572

RESUMEN

The signalling output of many transmembrane receptors that mediate cell-cell communication is restricted by the endosomal sorting complex required for transport (ESCRT), but the impact of this machinery on Eph tyrosine kinase receptor function is unknown. We identified the ESCRT-associated adaptor protein HD-PTP as part of an EphB2 proximity-dependent biotin identification (BioID) interactome, and confirmed this association using co-immunoprecipitation. HD-PTP loss attenuates the ephrin-B2:EphB2 signalling-induced collapse of cultured cells and axonal growth cones, and results in aberrant guidance of chick spinal motor neuron axons in vivo. HD-PTP depletion abrogates ephrin-B2-induced EphB2 clustering, and EphB2 and Src family kinase activation. HD-PTP loss also accelerates ligand-induced EphB2 degradation, contrasting the effects of HD-PTP loss on the relay of signals from other cell surface receptors. Our results link Eph function to the ESCRT machinery and demonstrate a role for HD-PTP in the earliest steps of ephrin-B:EphB signalling, as well as in obstructing premature receptor depletion.


Asunto(s)
Axones/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Efrina-B2/genética , Neuronas Motoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Receptor EphB2/genética , Animales , Axones/ultraestructura , Embrión de Pollo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/ultraestructura , Efrina-B2/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Neuronas Motoras/ultraestructura , Cultivo Primario de Células , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteolisis , Receptor EphB2/metabolismo , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/ultraestructura , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
12.
Methods Mol Biol ; 1998: 93-103, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31250296

RESUMEN

The endosomal sorting complexes required for transport (ESCRT) comprise a major trafficking pathway for plasma membrane proteins and are fundamental for ubiquitin-dependent cargo endocytosis. Here, we describe a method for studying the effect of ESCRT complexes on endo-lysosomal membrane trafficking and their role in receptor integrin α5ß1 downregulation. Single cell fluorescence ratio image analysis (FRIA), using appropriate fluorescence probes, enables the measurement of dynamics of integrin α5ß1 containing vesicles and represents a live cell-based method for studying the role of ESCRTs.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Integrina alfa5beta1/metabolismo , Microscopía Intravital/métodos , Análisis de la Célula Individual/métodos , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Colorantes Fluorescentes/química , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Integrina alfa5beta1/química , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Lisosomas/química , Lisosomas/metabolismo , Imagen Molecular/métodos , Sondas Moleculares/química
13.
Cell Rep ; 26(13): 3613-3628.e6, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917316

RESUMEN

TFEB and TFE3 are transcriptional regulators of the innate immune response, but the mechanisms regulating their activation upon pathogen infection are poorly elucidated. Using C. elegans and mammalian models, we report that the master metabolic modulator 5'-AMP-activated protein kinase (AMPK) and its negative regulator Folliculin (FLCN) act upstream of TFEB/TFE3 in the innate immune response, independently of the mTORC1 signaling pathway. In nematodes, loss of FLCN or overexpression of AMPK confers pathogen resistance via activation of TFEB/TFE3-dependent antimicrobial genes, whereas ablation of total AMPK activity abolishes this phenotype. Similarly, in mammalian cells, loss of FLCN or pharmacological activation of AMPK induces TFEB/TFE3-dependent pro-inflammatory cytokine expression. Importantly, a rapid reduction in cellular ATP levels in murine macrophages is observed upon lipopolysaccharide (LPS) treatment accompanied by an acute AMPK activation and TFEB nuclear localization. These results uncover an ancient, highly conserved, and pharmacologically actionable mechanism coupling energy status with innate immunity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Inmunidad Innata , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Resistencia a la Enfermedad , Inmunidad Innata/genética , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Biochem Cell Biol ; 97(1): 68-72, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29879361

RESUMEN

Cell surface receptors trigger the activation of signaling pathways to regulate key cellular processes, including cell survival and proliferation. Internalization, sorting, and trafficking of activated receptors, therefore, play a major role in the regulation and attenuation of cell signaling. Efficient sorting of endocytosed receptors is performed by the ESCRT machinery, which targets receptors for degradation by the sequential establishment of protein complexes. These events are tightly regulated and malfunction of ESCRT components can lead to abnormal trafficking and sustained signaling and promote tumor formation or progression. In this review, we analyze the modular domain organization of the alternative ESCRT protein HD-PTP and its role in receptor trafficking and tumorigenesis.


Asunto(s)
Endocitosis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Neoplasias/fisiopatología , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Humanos , Transporte de Proteínas , Relación Estructura-Actividad
15.
Sci Rep ; 8(1): 8414, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29849089

RESUMEN

Cachexia is a deadly muscle wasting syndrome that arises under conditions linked to chronic inflammation, such as cancer. Cytokines, including interferon γ (IFNγ), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6), and their downstream effectors such as Signal Transducer and Activator of Transcription 3 (STAT3), have been shown to play a prominent role in muscle wasting. Previously, we demonstrated that Pateamine A (PatA), a compound that targets eukaryotic initiation factor 4A (eIF4A), could prevent muscle wasting by modulating the translation of the inducible Nitric Oxide Synthase (iNOS) mRNA. Here we show that hippuristanol, a compound that impedes eIF4A in a manner distinct from PatA, similarly inhibits the iNOS/NO pathway and cytokine-induced muscle wasting. Furthermore, we show that hippuristanol perturbs the activation of the STAT3 pathway and expression of STAT3-gene targets such as IL-6. The decreased activation of STAT3, which resulted from a decrease in STAT3 protein expression, was due to the inhibition of STAT3 translation as there were no changes in STAT3 mRNA levels. These effects are likely dependent on the inhibition of eIF4A activity since we observed similar results using PatA. Our results identify the inhibition of eIF4A-responsive transcripts, such as STAT3, as a viable approach to alleviate cachexia.


Asunto(s)
Citocinas/farmacología , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Atrofia Muscular/metabolismo , Atrofia Muscular/prevención & control , Óxido Nítrico Sintasa de Tipo II/metabolismo , Factor de Transcripción STAT3/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Línea Celular , Compuestos Epoxi/farmacología , Interleucina-6/metabolismo , Macrólidos/farmacología , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/patología , Esteroles/farmacología , Tiazoles/farmacología
16.
Mol Cell ; 70(3): 531-544.e9, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727621

RESUMEN

While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.


Asunto(s)
Autofagia/fisiología , Ayuno/metabolismo , Metabolismo de los Lípidos/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Autofagosomas/metabolismo , Caenorhabditis elegans/metabolismo , Línea Celular , Fibroblastos/metabolismo , Células HEK293 , Humanos , Hígado/metabolismo , Ratones , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal/fisiología
17.
EMBO Mol Med ; 10(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29844217

RESUMEN

Activation of AMPK has been associated with pro-atrophic signaling in muscle. However, AMPK also has anti-inflammatory effects, suggesting that in cachexia, a syndrome of inflammatory-driven muscle wasting, AMPK activation could be beneficial. Here we show that the AMPK agonist AICAR suppresses IFNγ/TNFα-induced atrophy, while the mitochondrial inhibitor metformin does not. IFNγ/TNFα impair mitochondrial oxidative respiration in myotubes and promote a metabolic shift to aerobic glycolysis, similarly to metformin. In contrast, AICAR partially restored metabolic function. The effects of AICAR were prevented by the AMPK inhibitor Compound C and were reproduced with A-769662, a specific AMPK activator. AICAR and A-769662 co-treatment was found to be synergistic, suggesting that the anti-cachectic effects of these drugs are mediated through AMPK activation. AICAR spared muscle mass in mouse models of cancer and LPS induced atrophy. Together, our findings suggest a dual function for AMPK during inflammation-driven atrophy, wherein it can play a protective role when activated exogenously early in disease progression, but may contribute to anabolic suppression and atrophy when activated later through mitochondrial dysfunction and subsequent metabolic stress.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Caquexia/prevención & control , Metformina/uso terapéutico , Proteínas Quinasas/metabolismo , Ribonucleótidos/uso terapéutico , Quinasas de la Proteína-Quinasa Activada por el AMP , Aminoimidazol Carboxamida/uso terapéutico , Animales , Caquexia/etiología , Línea Celular , Activación Enzimática , Inflamación/complicaciones , Interferón gamma/antagonistas & inhibidores , Masculino , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Neoplasias Experimentales/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Quinasas/efectos de los fármacos , Choque Séptico/inducido químicamente , Choque Séptico/complicaciones , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
18.
EMBO Rep ; 19(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29592859

RESUMEN

Cellular senescence is a physiological response by which an organism halts the proliferation of potentially harmful and damaged cells. However, the accumulation of senescent cells over time can become deleterious leading to diseases and physiological decline. Our data reveal a novel interplay between senescence and the stress response that affects both the progression of senescence and the behavior of senescent cells. We show that constitutive exposure to stress induces the formation of stress granules (SGs) in proliferative and presenescent cells, but not in fully senescent cells. Stress granule assembly alone is sufficient to decrease the number of senescent cells without affecting the expression of bona fide senescence markers. SG-mediated inhibition of senescence is associated with the recruitment of the plasminogen activator inhibitor-1 (PAI-1), a known promoter of senescence, to these entities. PAI-1 localization to SGs increases the translocation of cyclin D1 to the nucleus, promotes RB phosphorylation, and maintains a proliferative, non-senescent state. Together, our data indicate that SGs may be targets of intervention to modulate senescence in order to impair or prevent its deleterious effects.


Asunto(s)
Senescencia Celular , Gránulos Citoplasmáticos/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Estrés Fisiológico , Línea Celular , Núcleo Celular/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Fosforilación , Inhibidor 1 de Activador Plasminogénico/genética
19.
Methods Mol Biol ; 1732: 57-67, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480468

RESUMEN

Glycogen is a main carbohydrate energy storage primarily found in fungi and animals. It is a glucose polymer that comprises α(1-4) glycosidic linkages attaching UDP-glucose molecules linearly and α(1-6) linkages branching glucose chains every 8-10 molecules to the main backbone chain. Glycogen synthase, branching enzyme, and glycogen phosphorylase are key enzymes involved in glycogen synthesis and degradation. These enzymes are tightly regulated by upstream kinases and phosphatases that respond to hormonal cues in order to coordinate storage and degradation and meet the cellular and organismal metabolic needs. The 5'AMP-activated protein kinase (AMPK) is one of the main regulators of glycogen metabolism. Despite extensive research, the role of AMPK in glycogen synthesis and degradation remains controversial. Specifically, the level and duration of AMPK activity highly influence the outcome on glycogen reserves. Here, we describe a rapid and robust protocol to efficiently measure the levels of glycogen in vitro. We use the commercially available glycogen determination kit to hydrolyze glycogen into glucose, which is oxidized to form D-gluconic acid and hydrogen peroxide that react with the OxiRed/Amplex Red probe generating a product that could be detected either in a colorimetric or fluorimetric plate format. This method is quantitative and could be used to address the role of AMPK in glycogen metabolism in cells and tissues. Summary This chapter provides a quick and reliable biochemical quantitative method to measure glycogen in cells and tissues. Briefly, this method is based on the degradation of glycogen to glucose, which is then specifically oxidized to generate a product that reacts with the OxiRed probe with maximum absorbance at 570 nm. This method is very accurate and highly sensitive. In the notes of this chapter, we shed the light on important actions that should be followed to get reliable results. We also state advantages and disadvantages of this method in comparison to other glycogen measurement techniques.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fluorometría/métodos , Glucosa/metabolismo , Glucógeno/análisis , Animales , Línea Celular Tumoral , Colorimetría/instrumentación , Colorimetría/métodos , Fluorometría/instrumentación , Glucosa/química , Glucógeno/metabolismo , Humanos , Hidrólisis , Hígado/metabolismo , Ratones , Músculo Esquelético/metabolismo , Oxazinas/química , Oxidación-Reducción , Fosforilación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Cancers (Basel) ; 10(1)2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29329237

RESUMEN

TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...