Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Cell Biol ; 102(2): 151323, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37201364

RESUMEN

Decreased male fertility is a growing health problem that requires a better understanding of molecular events regulating reproductive competence. Here the effects of circadian desynchrony on the rat spermatozoa functionality were studied. Circadian desynchrony was induced in rats that lived for 2 months under disturbed light conditions designed to mimic shiftwork in humans (two days of constant light, two days of continual dark, and three days of 14:10 h light:dark schedule). Such a condition abolished circadian oscillations in the rats' voluntary activity, followed by a flattened transcriptional pattern of the pituitary gene encoding follicle stimulating hormone subunit (Fshb), and genes important for germ cell maturation (Tnp1 and Prm2) as well as the clock in seminiferous tubules. However, the number of spermatozoa isolated from the epididymis of the rats suffering from circadian desynchrony did not deviate from the controls. Nevertheless, spermatozoa functionality, estimated by motility and progesterone-induced acrosome reaction, was reduced compared to the control. These changes were associated with the altered level of main markers of mitochondrial biogenesis (Pprgc1a/PGC1A, Nrf1/NRF1, Tfam, Cytc), decreased mitochondrial DNA copy number, ATP content, and clock genes (Bmal1/BMAL1, Clock, Cry1/2, and Reverba). The principal-component-analysis (PCA) points to a positive association of the clock and mitochondrial biogenesis-related genes in spermatozoa from rats suffering circadian desynchrony. Altogether, the results show the harmful effect of circadian desynchrony on spermatozoa functionality, targeting energetic homeostasis.


Asunto(s)
Factores de Transcripción ARNTL , Espermatozoides , Humanos , Ratas , Masculino , Animales , Factores de Transcripción ARNTL/genética
2.
Sci Rep ; 12(1): 15520, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109553

RESUMEN

The increased frequency of different lifestyles that disrupts circadian rhythms, together with a trend in the accretion of male idiopathic infertility, imposes the necessity to understand the contribution of circadian rhythms disruption to fertility regulation. In this study, the effects of circadian desynchrony (CD) on the steroidogenic capacity of adult Leydig cells were studied. Adult rats were housed under a disturbing light regime (2 days of constant light, 2 days of continual dark, and 3 days of 12:12 h light:dark schedule) designed to mimic shiftwork in humans. CD was characterized by changed and decreased rhythmic locomotor activity and reduced blood testosterone. In the Leydig cells changed transcription of the clock genes (Bmal1, Clock, Cry1 and Reverba/b increased while Per1/2 reversed phase) was detected. This was followed by reduced transcription of genes (Star, Cyp11a1, and Hsd3b1/2) primarily involved in mitosteroidogenesis. In parallel, mitochondrial membrane potential (Δψi) and ATP production declined losing their characteristic oscillatory pattern. Also, the main markers of mitochondrial biogenesis (Ppargc1a, Nrf1, Tfam, Cytc), fusion (Mfn2), and mitophagy (Pink1 and Tfeb) were disturbed. Collectively, CD targets mitochondria in Leydig cells by reducing mitosteroidogenesis, mitoenergetics, and disturbing mitochondrial dynamics. These changes contribute to testosterone decline compromising androgen-dependent functions, including reproduction.


Asunto(s)
Factores de Transcripción ARNTL , Células Intersticiales del Testículo , Factores de Transcripción ARNTL/metabolismo , Adenosina Trifosfato/metabolismo , Andrógenos/metabolismo , Animales , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Regulación de la Expresión Génica , Humanos , Células Intersticiales del Testículo/metabolismo , Masculino , Complejos Multienzimáticos/metabolismo , Proteínas Quinasas/metabolismo , Ratas , Testosterona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...