Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Obesity (Silver Spring) ; 32(2): 339-351, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086768

RESUMEN

OBJECTIVE: By exposing mice carrying a deletion of NADPH oxidase isoform 4, NOX4, specifically in pancreatic ß cells (ßNOX4-/-) to nutrient excess stimulated by a high-fat diet (HFD), this study aimed to elucidate the role of ß-cell redox status in the development of meta-inflammation within the diabetic phenotype. METHODS: The authors performed basic phenotyping of ßNOX4-/- mice on HFD involving insulin and glycemic analyses, histochemistry of adipocytes, indirect calorimetry, and cytokine analyses. To characterize local inflammation, the study used caspase-1 activity assay, interleukin-1ß immunochemistry, and real-time polymerase chain reaction during coculturing of ß cells with macrophages. RESULTS: The phenotype of ßNOX4-/- mice on HFD was not associated with hyperinsulinemia and hyperglycemia but showed accumulation of excessive lipids in epididymal fat and ß cells. Surprisingly, mice showed significantly reduced systemic inflammation. Decreased interleukin-1ß protein levels and downregulated NLRP3-inflammasome activity were observed on chronic glucose overload in ßNOX4-/- isolated islets and NOX4-silenced INS1-E cells resulting in attenuated proinflammatory polarization of macrophages/monocytes in vitro and in situ and reduced local islet inflammation. CONCLUSIONS: Experimental evidence suggests that NOX4 pro-oxidant activity in ß cells is involved in NLRP3-inflammasome activation during chronic nutrient overload and participates in local inflammatory signaling and perhaps toward peripheral tissues, contributing to a diabetic inflammatory phenotype.


Asunto(s)
Diabetes Mellitus , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Inflamasomas/metabolismo , Inflamación , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , NADPH Oxidasa 4/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
2.
Sci Rep ; 13(1): 5788, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031254

RESUMEN

Previously, a number of ~ 1.4 of mitochondrial DNA (mtDNA) molecules in a single nucleoid was reported, which would reflect a minimum nucleoid division. We applied 3D-double-color direct stochastic optical reconstruction microscopy (dSTORM), i.e. nanoscopy with ~ 25-40 nm x,y-resolution, together with our novel method of Delaunay segmentation of 3D data to identify unbiased 3D-overlaps. Noncoding D-loops were recognized in HeLa cells by mtDNA fluorescence in situ hybridization (mtFISH) 7S-DNA 250-bp probe, containing biotin, visualized by anti-biotin/Cy3B-conjugated antibodies. Other mtFISH probes with biotin or Alexa Fluor 647 (A647) against ATP6-COX3 gene overlaps (1,100 bp) were also used. Nucleoids were imaged by anti-DNA/(A647-)-Cy3B-conjugated antibodies. Resulting histograms counting mtFISH-loci/nucleoid overlaps demonstrated that 45% to 70% of visualized nucleoids contained two or more D-loops or ATP6-COX3-loci, indicating two or more mtDNA molecules per nucleoid. With increasing number of mtDNA per nucleoid, diameters were larger and their distribution histograms peaked at ~ 300 nm. A wide nucleoid diameter distribution was obtained also using 2D-STED for their imaging by anti-DNA/A647. At unchanged mtDNA copy number in osteosarcoma 143B cells, TFAM expression increased nucleoid spatial density 1.67-fold, indicating expansion of existing mtDNA and its redistribution into more nucleoids upon the higher TFAM/mtDNA stoichiometry. Validation of nucleoid imaging was also done with two TFAM mutants unable to bend or dimerize, respectively, which reduced both copy number and nucleoid spatial density by 80%. We conclude that frequently more than one mtDNA molecule exists within a single nucleoid in HeLa cells and that mitochondrial nucleoids do exist in a non-uniform size range.


Asunto(s)
ADN Mitocondrial , Proteínas de Unión al ADN , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Hibridación Fluorescente in Situ , Proteínas Mitocondriales/metabolismo
3.
Sci Rep ; 13(1): 683, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639413

RESUMEN

Pancreatic-ß-cell-specifying transcription factor Nkx6.1, indispensable for embryonic development of the pancreatic epithelium and commitment to ß-cell lineage, directly controls the expression of a glucose transporter (Glut2), pyruvate carboxylase (Pcx), and genes for insulin processing (endoplasmic reticulum oxidoreductase-1ß, Ero1lb; zinc transporter-8, Slc30a8). The Nkx6.1 decline in aging diabetic Goto-Kakizaki rats contributes to ß-cell trans-differentiation into δ-cells. Elucidating further Nkx6.1 roles, we studied Nkx6.1 ablation in rat INS-1E cells, prepared by CRISPR/Cas9 gene editing from single colonies. INS-1ENkx6.1-/- cells exhibited unchanged glucose-stimulated insulin secretion (GSIS), moderately decreased phosphorylating/non-phosphorylating respiration ratios at high glucose; unchanged but delayed ATP-elevation responses to glucose; delayed uptake of fluorescent glucose analog, but slightly improved cytosolic Ca2+-oscillations, induced by glucose; despite approximately halved Glut2, Pcx, Ero1lb, and Slc30a8 expression, and reduced nuclear receptors Nr4a1 and Nr4a3. Thus, ATP synthesis was time-compensated, despite the delayed GLUT2-mediated glucose uptake and crippled pyruvate-malate redox shuttle (owing to the PCX-deficiency) in INS-1ENkx6.1-/- cells. Nkx6.1 thus controls the expression of genes that are not essential for acute insulin secretion, the function of which can be compensated for. Considerations that Nkx6.1 deficiency is an ultimate determinant of ß-cell pathology beyond cell trans-(de-)differentiation or ß-cell identity are not supported by our results.


Asunto(s)
Proteínas de Homeodominio , Células Secretoras de Insulina , Insulina , Animales , Ratas , Adenosina Trifosfato/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
4.
Biomolecules ; 10(7)2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664368

RESUMEN

Transcript levels for selected ATP synthase membrane FO-subunits-including DAPIT-in INS-1E cells were found to be sensitive to lowering glucose down from 11 mM, in which these cells are routinely cultured. Depending on conditions, the diminished mRNA levels recovered when glucose was restored to 11 mM; or were elevated during further 120 min incubations with 20-mM glucose. Asking whether DAPIT expression may be elevated by hyperglycemia in vivo, we studied mice with hyaluronic acid implants delivering glucose for up to 14 days. Such continuous two-week glucose stimulations in mice increased DAPIT mRNA by >5-fold in isolated pancreatic islets (ATP synthase F1α mRNA by 1.5-fold). In INS-1E cells, the glucose-induced ATP increment vanished with DAPIT silencing (6% of ATP rise), likewise a portion of the mtDNA-copy number increment. With 20 and 11-mM glucose the phosphorylating/non-phosphorylating respiration rate ratio diminished to ~70% and 96%, respectively, upon DAPIT silencing, whereas net GSIS rates accounted for 80% and 90% in USMG5/DAPIT-deficient cells. Consequently, the sufficient DAPIT expression and complete ATP synthase assembly is required for maximum ATP synthesis and mitochondrial biogenesis, but not for insulin secretion as such. Elevated DAPIT expression at high glucose further increases the ATP synthesis efficiency.


Asunto(s)
Glucosa/administración & dosificación , Células Secretoras de Insulina/citología , Proteínas de la Membrana/genética , Regulación hacia Arriba , Adenosina Trifosfato/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular , Variaciones en el Número de Copia de ADN/efectos de los fármacos , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/genética , Glucosa/farmacología , Ácido Hialurónico/química , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Moleculares , Conformación Proteica , Ratas
5.
Diabetes ; 69(7): 1341-1354, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32245800

RESUMEN

NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islets (PIs) of ß-cells through an as yet unknown mechanism. We found NADPH oxidase isoform 4 (NOX4) to be the main producer of cytosolic H2O2, which is essential for GSIS; an increase in ATP alone was insufficient for GSIS. The fast GSIS phase was absent from PIs from NOX4-null, ß-cell-specific knockout mice (NOX4ßKO) (though not from NOX2 knockout mice) and from NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4ßKO mice. NOX4 silencing suppressed Ca2+ oscillations, and the patch-clamped KATP channel opened more frequently when glucose was high. Mitochondrial H2O2, decreasing upon GSIS, provided alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxides through electron-transfer flavoprotein:Q-oxidoreductase. Unlike GSIS, such insulin secretion was blocked with mitochondrial antioxidant SkQ1. Both NOX4 knockout and NOX4ßKO mice exhibited impaired glucose tolerance and peripheral insulin resistance. Thus, the redox signaling previously suggested to cause ß-cells to self-check hypothetically induces insulin resistance when it is absent. In conclusion, increases in ATP and H2O2 constitute an essential signal that switches on insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (it does so partially for fatty acids). Redox signaling could be impaired by cytosolic antioxidants; hence, those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage.


Asunto(s)
Glucosa/farmacología , Peróxido de Hidrógeno/metabolismo , Secreción de Insulina , NADPH Oxidasa 4/fisiología , Animales , Calcio/metabolismo , Células Cultivadas , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , Canales de Potasio/fisiología , Transducción de Señal/fisiología
6.
Int J Biochem Cell Biol ; 106: 21-25, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30391784

RESUMEN

The mitochondrion owns an autonomous genome. Double-stranded circular mitochondrial DNA (mtDNA) is organized in complexes with a packing/stabilizing transcription factor TFAM, having multiple roles, and proteins of gene expression machinery in structures called nucleoids. From hundreds to thousands nucleoids exist distributed in the matrix of mitochondrial reticulum network. A single mtDNA molecule contained within the single nucleoid is a currently preferred but questioned model. Nevertheless, mtDNA replication should lead transiently to its doubling within a nucleoid. However, nucleoid division has not yet been documented in detail. A 3D superresolution microscopy is required to resolve nucleoid biology occurring in ∼100 nm space, having an advantage over electron microscopy tomography in resolving the particular protein components. We discuss stochastic vs. stimulated emission depletion microscopy yielding wide vs. narrow nucleoid size distribution, respectively. Nucleoid clustering into spheroids fragmented from the continuous mitochondrial network, likewise possible nucleoid attachment to the inner membrane is reviewed.


Asunto(s)
ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Humanos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos
7.
Biochim Biophys Acta Bioenerg ; 1859(9): 829-844, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29727614

RESUMEN

3D super-resolution microscopy based on the direct stochastic optical reconstruction microscopy (dSTORM) with primary Alexa-Fluor-647-conjugated antibodies is a powerful method for accessing changes of objects that could be normally resolved only by electron microscopy. Despite the fact that mitochondrial cristae yet to become resolved, we have indicated changes in cristae width and/or morphology by dSTORM of ATP-synthase F1 subunit α (F1α). Obtained 3D images were analyzed with the help of Ripley's K-function modeling spatial patterns or transferring them into distance distribution function. Resulting histograms of distances frequency distribution provide most frequent distances (MFD) between the localized single antibody molecules. In fasting state of model pancreatic ß-cells, INS-1E, MFD between F1α were ~80 nm at 0 and 3 mM glucose, whereas decreased to 61 nm and 57 nm upon glucose-stimulated insulin secretion (GSIS) at 11 mM and 20 mM glucose, respectively. Shorter F1α interdistances reflected cristae width decrease upon GSIS, since such repositioning of F1α correlated to average 20 nm and 15 nm cristae width at 0 and 3 mM glucose, and 9 nm or 8 nm after higher glucose simulating GSIS (11, 20 mM glucose, respectively). Also, submitochondrial entities such as nucleoids of mtDNA were resolved e.g. after bromo-deoxyuridine (BrDU) pretreatment using anti-BrDU dSTORM. MFD in distances distribution histograms reflected an average nucleoid diameter (<100 nm) and average distances between nucleoids (~1000 nm). Double channel PALM/dSTORM with Eos-lactamase-ß plus anti-TFAM dSTORM confirmed the latter average inter-nucleoid distance. In conclusion, 3D single molecule (dSTORM) microscopy is a reasonable tool for studying mitochondrion.


Asunto(s)
ADN Mitocondrial/química , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Imagenología Tridimensional/métodos , Microscopía Fluorescente/instrumentación , Membranas Mitocondriales/metabolismo , Animales , Células Cultivadas , Células Hep G2 , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Proteínas Mitocondriales/metabolismo , Ratas , Ratas Wistar
8.
Sci Rep ; 7(1): 15674, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29142323

RESUMEN

Hypertrophic pancreatic islets (PI) of Goto Kakizaki (GK) diabetic rats contain a lower number of ß-cells vs. non-diabetic Wistar rat PI. Remaining ß-cells contain reduced mitochondrial (mt) DNA per nucleus (copy number), probably due to declining mtDNA replication machinery, decreased mt biogenesis or enhanced mitophagy. We confirmed mtDNA copy number decrease down to <30% in PI of one-year-old GK rats. Studying relations to mt nucleoids sizes, we employed 3D superresolution fluorescent photoactivable localization microscopy (FPALM) with lentivirally transduced Eos conjugate of mt single-stranded-DNA-binding protein (mtSSB) or transcription factor TFAM; or by 3D immunocytochemistry. mtSSB (binding transcription or replication nucleoids) contoured "nucleoids" which were smaller by 25% (less diameters >150 nm) in GK ß-cells. Eos-TFAM-visualized nucleoids, composed of 72% localized TFAM, were smaller by 10% (immunochemically by 3%). A theoretical ~70% decrease in cell nucleoid number (spatial density) was not observed, rejecting model of single mtDNA per nucleoid. The ß-cell maintenance factor Nkx6.1 mRNA and protein were declining with age (>12-fold, 10 months) and decreasing with fasting hyperglycemia in GK rats, probably predetermining the impaired mtDNA replication (copy number decrease), while spatial expansion of mtDNA kept nucleoids with only smaller sizes than those containing much higher mtDNA in non-diabetic ß-cells.


Asunto(s)
Diabetes Mellitus Experimental/genética , Proteínas de Homeodominio/genética , Células Secretoras de Insulina/patología , Factores de Transcripción/genética , Animales , Variaciones en el Número de Copia de ADN/genética , Replicación del ADN/genética , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Mitocondrias/genética , Mitocondrias/patología , Mitofagia/genética , Páncreas Exocrino/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA