Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Structure ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39305901

RESUMEN

The dystrophin-glycoprotein-complex (DGC), anchored by the transmembrane protein dystroglycan, functions to mechanically link the extracellular matrix and actin cytoskeleton. Breaking this connection is associated with diseases such as muscular dystrophy, yet cleavage of dystroglycan by matrix-metalloproteinases (MMPs) remains an understudied mechanism to disrupt the DGC. We determined the crystal structure of the membrane-adjacent domain (amino acids 491-722) of E. coli expressed human dystroglycan to understand MMP cleavage regulation. The structural model includes tandem immunoglobulin-like (IGL) and sperm/enterokinase/agrin-like (SEAL) domains, which support proteolysis in diverse receptors to facilitate mechanotransduction, membrane protection, and viral entry. The structure reveals a C-terminal extension that buries the MMP site by packing into a hydrophobic pocket, a unique mechanism of MMP cleavage regulation. We further demonstrate structure-guided and disease-associated mutations disrupt proteolytic regulation using a cell-surface proteolysis assay. Thus disrupted proteolysis is a potentially relevant mechanism for "breaking" the DGC link to contribute to disease pathogenesis.

2.
Cell Rep Methods ; 4(7): 100821, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013362

RESUMEN

Molecular tension sensors are central tools for mechanobiology studies but have limitations in interpretation. Reporting in Cell Reports Methods, Shoyer et al. discover that fluorescent protein photoswitching in concert with sensor extension may expand the use and interpretation of common force-sensing tools.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación
3.
APL Bioeng ; 8(3): 036102, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38957223

RESUMEN

Cell migration is the major driver of invasion and metastasis during cancer progression. For cells to migrate, they utilize the actin-myosin cytoskeleton and adhesion molecules, such as integrins and CD44, to generate traction forces in their environment. CD44 primarily binds to hyaluronic acid (HA) and integrins primarily bind to extracellular matrix (ECM) proteins such as collagen. However, the role of CD44 under integrin-mediated conditions and vice versa is not well known. Here, we performed traction force microscopy (TFM) on U251 cells seeded on collagen I-coated polyacrylamide gels to assess the functional mechanical relationship between integrins and CD44. Performing TFM on integrin-mediated adhesion conditions, i.e., collagen, we found that CD44KO U251 cells exerted more traction force than wild-type (WT) U251 cells. Furthermore, untreated WT and CD44-blocked WT exhibited comparable results. Conversely, in CD44-mediated adhesive conditions, integrin-blocked WT cells exerted a higher traction force than untreated WT cells. Our data suggest that CD44 and integrins have a mutually antagonistic relationship where one receptor represses the other's ability to generate traction force on its cognate substrate.

4.
Nat Commun ; 15(1): 3863, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769315

RESUMEN

Mars is a particularly attractive candidate among known astronomical objects to potentially host life. Results from space exploration missions have provided insights into Martian geochemistry that indicate oxychlorine species, particularly perchlorate, are ubiquitous features of the Martian geochemical landscape. Perchlorate presents potential obstacles for known forms of life due to its toxicity. However, it can also provide potential benefits, such as producing brines by deliquescence, like those thought to exist on present-day Mars. Here we show perchlorate brines support folding and catalysis of functional RNAs, while inactivating representative protein enzymes. Additionally, we show perchlorate and other oxychlorine species enable ribozyme functions, including homeostasis-like regulatory behavior and ribozyme-catalyzed chlorination of organic molecules. We suggest nucleic acids are uniquely well-suited to hypersaline Martian environments. Furthermore, Martian near- or subsurface oxychlorine brines, and brines found in potential lifeforms, could provide a unique niche for biomolecular evolution.


Asunto(s)
Evolución Molecular , Medio Ambiente Extraterrestre , Marte , Percloratos , ARN Catalítico , ARN Catalítico/metabolismo , ARN Catalítico/genética , Percloratos/metabolismo
5.
Cell Syst ; 15(1): 49-62.e4, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38237551

RESUMEN

Synthetic minimal cells are a class of bioreactors that have some, but not all, functions of live cells. Here, we report a critical step toward the development of a bottom-up minimal cell: cellular export of functional protein and RNA products. We used cell-penetrating peptide tags to translocate payloads across a synthetic cell vesicle membrane. We demonstrated efficient transport of active enzymes and transport of nucleic acid payloads by RNA-binding proteins. We investigated influence of a concentration gradient alongside other factors on the efficiency of the translocation, and we show a method to increase product accumulation in one location. We demonstrate the use of this technology to engineer molecular communication between different populations of synthetic cells, to exchange protein and nucleic acid signals. The synthetic minimal cell production and export of proteins or nucleic acids allows experimental designs that approach the complexity and relevancy of natural biological systems. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Células Artificiales , Péptidos de Penetración Celular , Ácidos Nucleicos , Ácidos Nucleicos/metabolismo , Células Artificiales/metabolismo , Proteínas , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo
6.
Nat Commun ; 14(1): 2468, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117218

RESUMEN

Mechanical forces drive critical cellular processes that are reflected in mechanical phenotypes, or mechanotypes, of cells and their microenvironment. We present here "Rupture And Deliver" Tension Gauge Tethers (RAD-TGTs) in which flow cytometry is used to record the mechanical history of thousands of cells exerting forces on their surroundings via their propensity to rupture immobilized DNA duplex tension probes. We demonstrate that RAD-TGTs recapitulate prior DNA tension probe studies while also yielding a gain of fluorescence in the force-generating cell that is detectable by flow cytometry. Furthermore, the rupture propensity is altered following disruption of the cytoskeleton using drugs or CRISPR-knockout of mechanosensing proteins. Importantly, RAD-TGTs can differentiate distinct mechanotypes among mixed populations of cells. We also establish oligo rupture and delivery can be measured via DNA sequencing. RAD-TGTs provide a facile and powerful assay to enable high-throughput mechanotype profiling, which could find various applications, for example, in combination with CRISPR screens and -omics analysis.


Asunto(s)
Fenómenos Mecánicos , Proteínas , Sondas de ADN , Fenómenos Fisiológicos Celulares , ADN
7.
mBio ; 14(1): e0258722, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36541758

RESUMEN

Replication-initiating HUH endonucleases (Reps) are sequence-specific nucleases that cleave and rejoin single-stranded DNA (ssDNA) during rolling-circle replication. These functions are mediated by covalent linkage of the Rep to its substrate post cleavage. Here, we describe the structures of the endonuclease domain from the Muscovy duck circovirus Rep in complex with its cognate ssDNA 10-mer with and without manganese in the active site. Structural and functional analyses demonstrate that divalent cations play both catalytic and structural roles in Reps by polarizing and positioning their substrate. Further structural comparisons highlight the importance of an intramolecular substrate Watson-Crick (WC) base pairing between the -4 and +1 positions. Subsequent kinetic and functional analyses demonstrate a functional dependency on WC base pairing between these positions regardless of the pair's identity (i.e., A·T, T·A, G·C, or C·G), highlighting a structural specificity for substrate interaction. Finally, considering how well WC swaps were tolerated in vitro, we sought to determine to what extent the canonical -4T·+1A pairing is conserved in circular Rep-encoding single-stranded DNA viruses and found evidence of noncanonical pairings in a minority of these genomes. Altogether, our data suggest that substrate intramolecular WC base pairing is a universal requirement for separation and reunion of ssDNA in Reps. IMPORTANCE Circular Rep-encoding single-stranded DNA (CRESS-DNA) viruses are a ubiquitous group of viruses that infect organisms across all domains of life. These viruses negatively impact both agriculture and human health. All members of this viral family employ a multifunctional nuclease (Rep) to initiate replication. Reps are structurally similar throughout this family, making them targets of interest for viral inhibition strategies. Here, we investigate the functional dependencies of the Rep protein from Muscovy duck circovirus for ssDNA interaction. We demonstrate that this Rep requires an intramolecular Watson-Crick base pairing for origin of replication (Ori) recognition and interaction. We show that noncognate base pair swaps are well tolerated, highlighting a local structural specificity over sequence specificity. Bioinformatic analysis found that the vast majority of CRESS-DNA Oris form base pairs in conserved positions, suggesting this pairing is a universal requirement for replication initiation in the CRESS-DNA virus family.


Asunto(s)
Circovirus , ADN de Cadena Simple , Humanos , Emparejamiento Base , ADN de Cadena Simple/genética , Endonucleasas/metabolismo , Circovirus/genética
8.
Biochem Biophys Rep ; 30: 101238, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35243016

RESUMEN

Ions in the Hofmeister series exhibit varied effects on biopolymers. Those classed as kosmotropes generally stabilize secondary structure, and those classed as chaotropes generally destabilize secondary structure. Here, we report that several anionic chaotropes exhibit unique effects on one DNA secondary structure - a G quadruplex. These chaotropes exhibit the expected behaviour (destabilization of secondary structure) in two other structural contexts: a DNA duplex and i-Motifs. Uniquely among secondary structures, we observe that G quadruplexes are comparatively insensitive to the presence of anionic chaotropes, but not other denaturants. Further, the presence of equimolar NaCl provided greater mitigation of the destabilization caused by other non-anionic denaturants. These results are consistent with the presence of monovalent cations providing an especially pronounced stabilizing effect to G quadruplexes when studied in denaturing solution conditions.

9.
Chembiochem ; 23(9): e202200090, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245408

RESUMEN

Here we demonstrate a switchable DNA electron-transfer catalyst, enabled by selective destabilization of secondary structure by the denaturant, perchlorate. The system is comprised of two strands, one of which can be selectively switched between a G-quadruplex and duplex or single-stranded conformations. In the G-quadruplex state, it binds hemin, enabling peroxidase activity. This switching ability arises from our finding that perchlorate, a chaotropic Hofmeister ion, selectively destabilizes duplex over G-quadruplex DNA. By varying perchlorate concentration, we show that the DNA structure can be switched between states that do and do not catalyze electron-transfer catalysis. State switching can be achieved in three ways: thermally, by dilution, or by concentration.


Asunto(s)
G-Cuádruplex , Peroxidasas , ADN , Hemina , Percloratos
10.
Methods Enzymol ; 623: 23-43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31239049

RESUMEN

Thermal denaturation is a common technique in the biophysical study of nucleic acids. These experiments are typically performed by monitoring the increase in absorbance (hyperchromism) of a sample at 260nm with temperature (Mergny & Lacroix, 2003; Puglisi & Tinoco, 1989). This wavelength is chosen as nucleic acids of mixed sequence typically exhibit their maximum absorbance here. Exceptions exist, however, some noncanonical nucleic acid structures exhibit differing spectral changes with temperature, resulting in other wavelengths being convenient reporters of secondary structure. In the case of nucleic acids that bind visible light-absorbing ligands, such as fluorogenic aptamers, another wavelength can be a convenient reporter of secondary structure stability and RNA-ligand recognition. As it can be difficult, if not impossible, to know which wavelength to employ a priori, we have developed a system for obtaining the full UV-visible spectrum of a sample at each wavelength, allowing for the subsequent extraction of the absorbance-temperature profile at the desired wavelength. Here, we describe the apparatus and software used to do so. We also describe another technique for the use of a qPCR instrument for measuring secondary structure stability of fluorescent nucleic acid-ligand complexes.


Asunto(s)
Colorantes Fluorescentes/química , Ácidos Nucleicos/química , Aptámeros de Nucleótidos/química , ADN/química , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , ARN/química , Espectrofotometría Ultravioleta/métodos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...