Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(12): 105409, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918802

RESUMEN

Maintenance of the proteasome requires oxidative phosphorylation (ATP) and mitigation of oxidative damage, in an increasingly dysfunctional relationship with aging. SLC3A2 plays a role on both sides of this dichotomy as an adaptor to SLC7A5, a transporter of branched-chain amino acids (BCAA: Leu, Ile, Val), and to SLC7A11, a cystine importer supplying cysteine to the synthesis of the antioxidant glutathione. Endurance in mammalian muscle depends in part on oxidation of BCAA; however, elevated serum levels are associated with insulin resistance and shortened lifespans. Intriguingly, the evolution of modern birds (Neoaves) has entailed the purging of genes including SLC3A2, SLC7A5, -7, -8, -10, and SLC1A4, -5, largely removing BCAA exchangers and their interacting Na+/Gln symporters in pursuit of improved energetics. Additional gene purging included mitochondrial BCAA aminotransferase (BCAT2), pointing to reduced oxidation of BCAA and increased hepatic conversion to triglycerides and glucose. Fat deposits are anhydrous and highly reduced, maximizing the fuel/weight ratio for prolonged flight, but fat accumulation in muscle cells of aging humans contributes to inflammation and senescence. Duplications of the bidirectional α-ketoacid transporters SLC16A3, SLC16A7, the cystine transporters SLC7A9, SLC7A11, and N-glycan branching enzymes MGAT4B, MGAT4C in Neoaves suggests a shift to the transport of deaminated essential amino acid, and stronger mitigation of oxidative stress supported by the galectin lattice. We suggest that Alfred Lotka's theory of natural selection as a maximum power organizer (PNAS 8:151,1922) made an unusually large contribution to Neoave evolution. Further molecular analysis of Neoaves may reveal novel rewiring with applications for human health and longevity.


Asunto(s)
Aves , Evolución Molecular , Longevidad , Animales , Humanos , Aminoácidos de Cadena Ramificada/metabolismo , Cistina/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Hígado/metabolismo , Longevidad/genética , Aves/genética , Aves/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/genética , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Selección Genética
2.
J Biol Chem ; 299(12): 105416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918808

RESUMEN

Proteostasis requires oxidative metabolism (ATP) and mitigation of the associated damage by glutathione, in an increasingly dysfunctional relationship with aging. SLC3A2 (4F2hc, CD98) plays a role as a disulfide-linked adaptor to the SLC7A5 and SLC7A11 exchangers which import essential amino acids and cystine while exporting Gln and Glu, respectively. The positions of N-glycosylation sites on SLC3A2 have evolved with the emergence of primates, presumably in synchrony with metabolism. Herein, we report that each of the four sites in SLC3A2 has distinct profiles of Golgi-modified N-glycans. N-glycans at the primate-derived site N381 stabilized SLC3A2 in the galectin-3 lattice against coated-pit endocytosis, while N365, the site nearest the membrane promoted glycolipid-galectin-3 (GL-Lect)-driven endocytosis. Our results indicate that surface retention and endocytosis are precisely balanced by the number, position, and remodeling of N-glycans on SLC3A2. Furthermore, proteomics and functional assays revealed an N-glycan-dependent clustering of the SLC3A2∗SLC7A5 heterodimer with amino-acid/Na+ symporters (SLC1A4, SLC1A5) that balances branched-chain amino acids and Gln levels, at the expense of ATP to maintain the Na+/K+ gradient. In replete conditions, SLC3A2 interactions require Golgi-modified N-glycans at N365D and N381D, whereas reducing N-glycosylation in the endoplasmic reticulum by fluvastatin treatment promoted the recruitment of CD44 and transporters needed to mitigate stress. Thus, SLC3A2 N-glycosylation and Golgi remodeling of the N-glycans have distinct roles in amino acids import for growth, maintenance, and metabolic stresses.


Asunto(s)
Cadena Pesada de la Proteína-1 Reguladora de Fusión , Transportador de Aminoácidos Neutros Grandes 1 , Estrés Fisiológico , Humanos , Adenosina Trifosfato/metabolismo , Aminoácidos/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Galectina 3/metabolismo , Glicosilación , Células HeLa , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Polisacáridos/metabolismo
3.
J Neuroinflammation ; 20(1): 209, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37705084

RESUMEN

BACKGROUND: In the demyelinating disease multiple sclerosis (MS), chronic-active brain inflammation, remyelination failure and neurodegeneration remain major issues despite immunotherapy. While B cell depletion and blockade/sequestration of T and B cells potently reduces episodic relapses, they act peripherally to allow persistence of chronic-active brain inflammation and progressive neurological dysfunction. N-acetyglucosamine (GlcNAc) is a triple modulator of inflammation, myelination and neurodegeneration. GlcNAc promotes biosynthesis of Asn (N)-linked-glycans, which interact with galectins to co-regulate the clustering/signaling/endocytosis of multiple glycoproteins simultaneously. In mice, GlcNAc crosses the blood brain barrier to raise N-glycan branching, suppress inflammatory demyelination by T and B cells and trigger stem/progenitor cell mediated myelin repair. MS clinical severity, demyelination lesion size and neurodegeneration inversely associate with a marker of endogenous GlcNAc, while in healthy humans, age-associated increases in endogenous GlcNAc promote T cell senescence. OBJECTIVES AND METHODS: An open label dose-escalation mechanistic trial of oral GlcNAc at 6 g (n = 18) and 12 g (n = 16) for 4 weeks was performed in MS patients on glatiramer acetate and not in relapse from March 2016 to December 2019 to assess changes in serum GlcNAc, lymphocyte N-glycosylation and inflammatory markers. Post-hoc analysis examined changes in serum neurofilament light chain (sNfL) as well as neurological disability via the Expanded Disability Status Scale (EDSS). RESULTS: Prior to GlcNAc therapy, high serum levels of the inflammatory cytokines IFNγ, IL-17 and IL-6 associated with reduced baseline levels of a marker of endogenous serum GlcNAc. Oral GlcNAc therapy was safe, raised serum levels and modulated N-glycan branching in lymphocytes. Glatiramer acetate reduces TH1, TH17 and B cell activity as well as sNfL, yet the addition of oral GlcNAc dose-dependently lowered serum IFNγ, IL-17, IL-6 and NfL. Oral GlcANc also dose-dependently reduced serum levels of the anti-inflammatory cytokine IL-10, which is increased in the brain of MS patients. 30% of treated patients displayed confirmed improvement in neurological disability, with an average EDSS score decrease of 0.52 points. CONCLUSIONS: Oral GlcNAc inhibits inflammation and neurodegeneration markers in MS patients despite concurrent immunomodulation by glatiramer acetate. Blinded studies are required to investigate GlcNAc's potential to control residual brain inflammation, myelin repair and neurodegeneration in MS.


Asunto(s)
Encefalitis , Esclerosis Múltiple , Humanos , Animales , Ratones , Acetilglucosamina/uso terapéutico , Interleucina-17 , Acetato de Glatiramer , Interleucina-6 , Esclerosis Múltiple/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Citocinas
4.
Science ; 378(6615): 68-78, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36201590

RESUMEN

Establishing causal links between inherited polymorphisms and cancer risk is challenging. Here, we focus on the single-nucleotide polymorphism rs55705857, which confers a sixfold greater risk of isocitrate dehydrogenase (IDH)-mutant low-grade glioma (LGG). We reveal that rs55705857 itself is the causal variant and is associated with molecular pathways that drive LGG. Mechanistically, we show that rs55705857 resides within a brain-specific enhancer, where the risk allele disrupts OCT2/4 binding, allowing increased interaction with the Myc promoter and increased Myc expression. Mutating the orthologous mouse rs55705857 locus accelerated tumor development in an Idh1R132H-driven LGG mouse model from 472 to 172 days and increased penetrance from 30% to 75%. Our work reveals mechanisms of the heritable predisposition to lethal glioma in ~40% of LGG patients.


Asunto(s)
Neoplasias Encefálicas , Cromosomas Humanos Par 8 , Glioma , Isocitrato Deshidrogenasa , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Cromosomas Humanos Par 8/genética , Glioma/genética , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Ratones , Mutación , Polimorfismo de Nucleótido Simple
5.
Nat Aging ; 2(3): 231-242, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35528547

RESUMEN

Impaired T cell immunity with aging increases mortality from infectious disease. The branching of Asparagine-linked glycans is a critical negative regulator of T cell immunity. Here we show that branching increases with age in females more than males, in naïve more than memory T cells, and in CD4+ more than CD8+ T cells. Female sex hormones and thymic output of naïve T cells (TN) decrease with age, however neither thymectomy nor ovariectomy altered branching. Interleukin-7 (IL-7) signaling was increased in old female more than male mouse TN cells, and triggered increased branching. N-acetylglucosamine, a rate-limiting metabolite for branching, increased with age in humans and synergized with IL-7 to raise branching. Reversing elevated branching rejuvenated T cell function and reduced severity of Salmonella infection in old female mice. These data suggest sex-dimorphic antagonistic pleiotropy, where IL-7 initially benefits immunity through TN maintenance but inhibits TN function by raising branching synergistically with age-dependent increases in N-acetylglucosamine.


Asunto(s)
Acetilglucosamina , Linfocitos T CD8-positivos , Humanos , Masculino , Femenino , Animales , Ratones , Interleucina-7 , Envejecimiento , Polisacáridos
6.
Anticancer Agents Med Chem ; 22(8): 1611-1621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34515014

RESUMEN

BACKGROUND: Chronic inflammation plays a crucial role in the initiation, promotion, and invasion of tumors, and thus the antiproliferative effects of numerous anti-inflammatory drugs have been frequently reported in the literature. Upregulation of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) has been linked to various human cancers, including breast cancer. OBJECTIVES: This research aims to investigate the antiproliferative activity of different Non-steroidal anti-inflammatory drugs (NSAIDs), including COX-2 selective and non-selective agents, against various breast cancer cell lines and to elucidate possible molecular pathways involved in their activity. METHODS: The antiproliferative and combined effects of NSAIDs with raloxifene were evaluated by MTT assay. Cell migration was assessed using a wound-healing assay. The mechanism of cell death was determined using the Annexin V-FITC/ propidium iodide staining flow cytometry method. A mass spectrometry-based targeted metabolomics approach was used to profile the metabolomic changes induced in the T47d cells upon drug treatment. RESULTS: Our results have demonstrated that celecoxib, a potent and selective COX-2 inhibitor, resulted in significant antiproliferative activity against all examined breast cancer cell lines with IC50 values of 95.44, 49.50. and 97.70 µM against MDA-MB-231, T47d, and MCF-7, respectively. Additionally, celecoxib exhibited a synergistic effect against T47d cells combined with raloxifene, a selective estrogen receptor modulator. Interestingly, celecoxib treatment increased cell apoptosis and resulted in substantial inhibition of cancer cell migration. In addition, the metabolomic analysis suggests that celecoxib may have affected metabolites (n = 43) that are involved in several pathways, including the tricarboxylic acid cycle, amino acids metabolism pathways, and energy production pathways in cancer cells. CONCLUSION: Celecoxib may possess potential therapeutic utility for breast cancer treatment as monotherapy or in combination therapy. The reported metabolic changes taking place upon celecoxib treatment may shed light on possible molecular targets mediating the antiproliferative activity of celecoxib in an independent manner of its COX-2 inhibition.


Asunto(s)
Neoplasias de la Mama , Antiinflamatorios no Esteroideos/farmacología , Apoptosis , Neoplasias de la Mama/patología , Celecoxib/farmacología , Proliferación Celular , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Femenino , Humanos , Metabolómica , Clorhidrato de Raloxifeno/uso terapéutico
7.
JAMA Neurol ; 78(7): 842-852, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33970182

RESUMEN

Importance: N-glycan branching modulates cell surface receptor availability, and its deficiency in mice promotes inflammatory demyelination, reduced myelination, and neurodegeneration. N-acetylglucosamine (GlcNAc) is a rate-limiting substrate for N-glycan branching, but, to our knowledge, endogenous serum levels in patients with multiple sclerosis (MS) are unknown. Objective: To investigate a marker of endogenous serum GlcNAc levels in patients with MS. Design, Setting, and Participants: A cross-sectional discovery study and cross-sectional confirmatory study were conducted at 2 academic MS centers in the US and Germany. The discovery study recruited 54 patients with MS from an outpatient clinic as well as 66 healthy controls between April 20, 2010, and June 21, 2013. The confirmatory study recruited 180 patients with MS from screening visits at an academic MS study center between April 9, 2007, and February 29, 2016. Serum samples were analyzed from December 2, 2013, to March 2, 2015. Statistical analysis was performed from February 23, 2020, to March 18, 2021. Main Outcomes and Measures: Serum levels of GlcNAc plus its stereoisomers, termed N-acetylhexosamine (HexNAc), were assessed using targeted tandem mass spectroscopy. Secondary outcomes (confirmatory study) comprised imaging and clinical disease markers. Results: The discovery cohort included 66 healthy controls (38 women; mean [SD] age, 42 [20] years), 33 patients with relapsing-remitting MS (RRMS; 25 women; mean [SD] age, 50 [11] years), and 21 patients with progressive MS (PMS; 14 women; mean [SD] age, 55 [7] years). The confirmatory cohort included 125 patients with RRMS (83 women; mean [SD] age, 40 [9] years) and 55 patients with PMS (22 women; mean [SD] age, 49 [80] years). In the discovery cohort, the mean (SD) serum level of GlcNAc plus its stereoisomers (HexNAc) was 710 (174) nM in healthy controls and marginally reduced in patients with RRMS (mean [SD] level, 682 [173] nM; P = .04), whereas patients with PMS displayed markedly reduced levels compared with healthy controls (mean [SD] level, 548 [101] nM; P = 9.55 × 10-9) and patients with RRMS (P = 1.83 × 10-4). The difference between patients with RRMS (mean [SD] level, 709 [193] nM) and those with PMS (mean [SD] level, 405 [161] nM; P = 7.6 × 10-18) was confirmed in the independent confirmatory cohort. Lower HexNAc serum levels correlated with worse expanded disability status scale scores (ρ = -0.485; P = 4.73 × 10-12), lower thalamic volume (t = 1.7; P = .04), and thinner retinal nerve fiber layer (B = 0.012 [SE = 7.5 × 10-11]; P = .008). Low baseline serum HexNAc levels correlated with a greater percentage of brain volume loss at 18 months (t = 1.8; P = .04). Conclusions and Relevance: This study suggests that deficiency of GlcNAc plus its stereoisomers (HexNAc) may be a biomarker for PMS. Previous preclinical, human genetic, and ex vivo human mechanistic studies revealed that N-glycan branching and/or GlcNAc may reduce proinflammatory responses, promote myelin repair, and decrease neurodegeneration. Combined, the data suggest that GlcNAc deficiency may be associated with progressive disease and neurodegeneration in patients with MS.


Asunto(s)
Acetilglucosamina/sangre , Esclerosis Múltiple Crónica Progresiva/sangre , Enfermedades Neurodegenerativas/sangre , Adulto , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Estudios de Cohortes , Estudios Transversales , Femenino , Alemania , Humanos , Masculino , Persona de Mediana Edad , Estados Unidos
8.
Science ; 370(6514): 351-356, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33060361

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) couples nutrient sufficiency to cell growth. mTORC1 is activated by exogenously acquired amino acids sensed through the GATOR-Rag guanosine triphosphatase (GTPase) pathway, or by amino acids derived through lysosomal degradation of protein by a poorly defined mechanism. Here, we revealed that amino acids derived from the degradation of protein (acquired through oncogenic Ras-driven macropinocytosis) activate mTORC1 by a Rag GTPase-independent mechanism. mTORC1 stimulation through this pathway required the HOPS complex and was negatively regulated by activation of the GATOR-Rag GTPase pathway. Therefore, distinct but functionally coordinated pathways control mTORC1 activity on late endocytic organelles in response to distinct sources of amino acids.


Asunto(s)
Aminoácidos/metabolismo , GTP Fosfohidrolasas/metabolismo , Lisosomas/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas R-SNARE/metabolismo , Activación Enzimática , Células HEK293 , Humanos , Pinocitosis , Proteolisis
9.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32649862

RESUMEN

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Asunto(s)
Daño del ADN , Redes Reguladoras de Genes/fisiología , Aminoquinolinas/farmacología , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Humanos , Ratones , Ácidos Picolínicos/farmacología , ARN Guía de Kinetoplastida/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
10.
Nat Metab ; 2(6): 499-513, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32694731

RESUMEN

The de novo synthesis of fatty acids has emerged as a therapeutic target for various diseases, including cancer. Because cancer cells are intrinsically buffered to combat metabolic stress, it is important to understand how cells may adapt to the loss of de novo fatty acid biosynthesis. Here, we use pooled genome-wide CRISPR screens to systematically map genetic interactions (GIs) in human HAP1 cells carrying a loss-of-function mutation in fatty acid synthase (FASN), whose product catalyses the formation of long-chain fatty acids. FASN-mutant cells show a strong dependence on lipid uptake that is reflected in negative GIs with genes involved in the LDL receptor pathway, vesicle trafficking and protein glycosylation. Further support for these functional relationships is derived from additional GI screens in query cell lines deficient in other genes involved in lipid metabolism, including LDLR, SREBF1, SREBF2 and ACACA. Our GI profiles also identify a potential role for the previously uncharacterized gene C12orf49 (which we call LUR1) in regulation of exogenous lipid uptake through modulation of SREBF2 signalling in response to lipid starvation. Overall, our data highlight the genetic determinants underlying the cellular adaptation associated with loss of de novo fatty acid synthesis and demonstrate the power of systematic GI mapping for uncovering metabolic buffering mechanisms in human cells.


Asunto(s)
Ácidos Grasos/biosíntesis , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Sistemas CRISPR-Cas , Línea Celular , Mapeo Cromosómico , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Humanos , Lipogénesis/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Inanición/genética , Inanición/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
11.
J Biol Chem ; 295(51): 17413-17424, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33453988

RESUMEN

Myelination plays an important role in cognitive development and in demyelinating diseases like multiple sclerosis (MS), where failure of remyelination promotes permanent neuro-axonal damage. Modification of cell surface receptors with branched N-glycans coordinates cell growth and differentiation by controlling glycoprotein clustering, signaling, and endocytosis. GlcNAc is a rate-limiting metabolite for N-glycan branching. Here we report that GlcNAc and N-glycan branching trigger oligodendrogenesis from precursor cells by inhibiting platelet-derived growth factor receptor-α cell endocytosis. Supplying oral GlcNAc to lactating mice drives primary myelination in newborn pups via secretion in breast milk, whereas genetically blocking N-glycan branching markedly inhibits primary myelination. In adult mice with toxin (cuprizone)-induced demyelination, oral GlcNAc prevents neuro-axonal damage by driving myelin repair. In MS patients, endogenous serum GlcNAc levels inversely correlated with imaging measures of demyelination and microstructural damage. Our data identify N-glycan branching and GlcNAc as critical regulators of primary myelination and myelin repair and suggest that oral GlcNAc may be neuroprotective in demyelinating diseases like MS.


Asunto(s)
Acetilglucosamina/farmacología , Diferenciación Celular , Vaina de Mielina/metabolismo , Fármacos Neuroprotectores/farmacología , Células Precursoras de Oligodendrocitos/citología , Acetilglucosamina/administración & dosificación , Acetilglucosamina/uso terapéutico , Administración Oral , Animales , Biomarcadores/metabolismo , Enfermedades Desmielinizantes/tratamiento farmacológico , Endocitosis , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal
12.
Oncotarget ; 10(62): 6668-6677, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31803361

RESUMEN

Caveolin-1 is a transmembrane protein with both tumor promoter and suppressor functions that remain poorly understood. Cav1 phosphorylation by Src kinase on tyrosine 14 is closely associated with focal adhesion dynamics and tumor cell migration, however the role of pCav1 in vivo in tumor progression remains poorly characterized. Herein, we expressed phosphomimetic Y14D, wild type, and non-phosphorylatable Y14F forms of Cav1 in MDA-MB-435 cancer cells. Expression of Cav1Y14D reduced cell proliferation and induced the TP53 tumor suppressor. Ectopic expression in MDA-MB-435 cells of Y14 phosphorylatable Cav1 was required for induction of TP53 in response to oxidative stress. Cav1Y14D promotes an apparent reversal of the Warburg effect and markedly inhibited tumor growth in vivo. However, Cav1 induced pseudopodial recruitment of glycolytic enzymes, and time-lapse intravital imaging showed increased invadopodia protrusion and extravasation into blood vessels for Cav1WT and Y14D but not for Y14F. Our results suggest that Cav1 Y14 phosphorylation levels play a role in the conflicting demands on metabolic resources associated with cancer cell proliferation versus motility.

13.
PLoS One ; 14(3): e0214253, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30913278

RESUMEN

N-acetylglucosamine (GlcNAc) branching of Asn (N)-linked glycans inhibits pro-inflammatory T cell responses and models of autoimmune diseases such as Multiple Sclerosis (MS). Metabolism controls N-glycan branching in T cells by regulating de novo hexosamine pathway biosynthesis of UDP-GlcNAc, the donor substrate for the Golgi branching enzymes. Activated T cells switch metabolism from oxidative phosphorylation to aerobic glycolysis and glutaminolysis. This reduces flux of glucose and glutamine into the hexosamine pathway, thereby inhibiting de novo UDP-GlcNAc synthesis and N-glycan branching. Salvage of GlcNAc into the hexosamine pathway overcomes this metabolic suppression to restore UDP-GlcNAc synthesis and N-glycan branching, thereby promoting anti-inflammatory T regulatory (Treg) over pro-inflammatory T helper (TH) 17 and TH1 differentiation to suppress autoimmunity. However, GlcNAc activity is limited by the lack of a cell surface transporter and requires high doses to enter cells via macropinocytosis. Here we report that GlcNAc-6-acetate is a superior pro-drug form of GlcNAc. Acetylation of amino-sugars improves cell membrane permeability, with subsequent de-acetylation by cytoplasmic esterases allowing salvage into the hexosamine pathway. Per- and bi-acetylation of GlcNAc led to toxicity in T cells, whereas mono-acetylation at only the 6 > 3 position raised N-glycan branching greater than GlcNAc without inducing significant toxicity. GlcNAc-6-acetate inhibited T cell activation/proliferation, TH1/TH17 responses and disease progression in Experimental Autoimmune Encephalomyelitis (EAE), a mouse model of MS. Thus, GlcNAc-6-Acetate may provide an improved therapeutic approach to raise N-glycan branching, inhibit pro-inflammatory T cell responses and treat autoimmune diseases such as MS.


Asunto(s)
Acetilglucosamina/inmunología , Diferenciación Celular/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Células TH1/inmunología , Células Th17/inmunología , Acetilación , Animales , Proliferación Celular , Encefalomielitis Autoinmune Experimental/patología , Humanos , Ratones , Esclerosis Múltiple/patología , Permeabilidad , Células TH1/patología , Células Th17/patología
14.
Behav Brain Res ; 312: 253-64, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27329152

RESUMEN

Psychosocial adversity in early life increases the likelihood of mental and physical illness, but the underlying mechanisms are poorly understood. Mgat5 is an N-acetylglucosaminyltransferase in the Golgi pathway that remodels the N-glycans of glycoproteins at the cell surface. Mice lacking Mgat5 display conditional phenotypes in behaviour, immunity, metabolism, aging and cancer susceptibility. Here we investigated potential gene-environment interactions between Mgat5 and early life adversity on behaviour and physiological measures of physical health. Mgat5(-/-) mutant and Mgat5(+/+) wild-type C57Bl/6 littermates were subject to maternal separation or foster rearing as an early life stressor, in comparison to control mice reared normally. We found an interaction between Mgat5 genotype and maternal rearing condition in which Mgat5(-/-) mice subjected to early life stress had lower glucose levels and higher bone density. Mgat5(-/-) genotype was also associated with less immobility in the forced swim test and greater sucrose consumption, consistent with a less depression-like phenotype. Cortical neuron dendrite spine density and branching was altered by Mgat5 deletion as well. In general, Mgat5 genotype affects both behaviour and physical outcomes in response to early life stress, suggesting some shared pathways for both in this model. These results provide a starting point for studying the mechanisms by which protein N-glycosylation mediates the effects of early life adversity.


Asunto(s)
Interacción Gen-Ambiente , Conducta Materna , Privación Materna , N-Acetilglucosaminiltransferasas/fisiología , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Animales , Peso Corporal , Densidad Ósea , Encéfalo/patología , Corticosterona/sangre , Espinas Dendríticas/patología , Depresión/complicaciones , Depresión/metabolismo , Depresión/fisiopatología , Femenino , Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , N-Acetilglucosaminiltransferasas/genética , Neuronas/patología , Restricción Física , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo
15.
Nat Cell Biol ; 18(7): 803-813, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27323329

RESUMEN

Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor (HIF) controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-tyrosine phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, although the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2(+) xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2(+) BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The moyamoya disease gene product RNF213, an E3 ligase, is negatively regulated by PTP1B in HER2(+) BC cells. RNF213 knockdown reverses the effects of PTP1B deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2(+) BC cells, and partially restores tumorigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2(+) BC, and possibly other malignancies, in the hypoxic tumour microenvironment.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Consumo de Oxígeno/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Hipoxia de la Célula , Femenino , Genes erbB-2/genética , Humanos , Ratones , Mitocondrias/metabolismo
16.
Sci Rep ; 6: 23043, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26972830

RESUMEN

De novo uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis requires glucose, glutamine, acetyl-CoA and uridine, however GlcNAc salvaged from glycoconjugate turnover and dietary sources also makes a significant contribution to the intracellular pool. Herein we ask whether dietary GlcNAc regulates nutrient transport and intermediate metabolism in C57BL/6 mice by increasing UDP-GlcNAc and in turn Golgi N-glycan branching. GlcNAc added to the drinking water showed a dose-dependent increase in growth of young mice, while in mature adult mice fat and body-weight increased without affecting calorie-intake, activity, energy expenditure, or the microbiome. Oral GlcNAc increased hepatic UDP-GlcNAc and N-glycan branching on hepatic glycoproteins. Glucose homeostasis, hepatic glycogen, lipid metabolism and response to fasting were altered with GlcNAc treatment. In cultured cells GlcNAc enhanced uptake of glucose, glutamine and fatty-acids, and enhanced lipid synthesis, while inhibition of Golgi N-glycan branching blocked GlcNAc-dependent lipid accumulation. The N-acetylglucosaminyltransferase enzymes of the N-glycan branching pathway (Mgat1,2,4,5) display multistep ultrasensitivity to UDP-GlcNAc, as well as branching-dependent compensation. Indeed, oral GlcNAc rescued fat accumulation in lean Mgat5(-/-) mice and in cultured Mgat5(-/-) hepatocytes, consistent with N-glycan branching compensation. Our results suggest GlcNAc reprograms cellular metabolism by enhancing nutrient uptake and lipid storage through the UDP-GlcNAc supply to N-glycan branching pathway.


Asunto(s)
Acetilglucosamina/farmacología , Glucosamina/análogos & derivados , Aparato de Golgi/metabolismo , Polisacáridos/metabolismo , Células 3T3-L1 , Acetilglucosamina/administración & dosificación , Administración Oral , Factores de Edad , Animales , Vías Biosintéticas/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Línea Celular , Células Cultivadas , Cromatografía Liquida , Metabolismo Energético/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Glucosamina/metabolismo , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Glucógeno Hepático/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Espectrometría de Masas en Tándem
17.
Glycobiology ; 25(2): 225-40, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25395405

RESUMEN

Nutrient transporters are critical gate-keepers of extracellular metabolite entry into the cell. As integral membrane proteins, most transporters are N-glycosylated, and the N-glycans are remodeled in the Golgi apparatus. The Golgi branching enzymes N-acetylglucosaminyltransferases I, II, IV, V and avian VI (encoded by Mgat1, Mgat2, Mgat4a/b/c Mgat5 and Mgat6), each catalyze the addition of N-acetylglucosamine (GlcNAc) in N-glycans. Here, we asked whether N-glycan branching promotes nutrient transport and metabolism in immortal human HeLa carcinoma and non-malignant HEK293 embryonic kidney cells. Mgat6 is absent in mammals, but ectopic expression can be expected to add an additional ß1,4-linked branch to N-glycans, and may provide evidence for functional redundancy of the N-glycan branches. Tetracycline (tet)-induced overexpression of Mgat1, Mgat5 and Mgat6 resulted in increased enzyme activity and increased N-glycan branching concordant with the known specificities of these enzymes. Tet-induced Mgat1, Mgat5 and Mgat6 combined with stimulation of hexosamine biosynthesis pathway (HBP) to UDP-GlcNAc, increased cellular metabolite levels, lactate and oxidative metabolism in an additive manner. We then tested the hypothesis that N-glycan branching alone might promote nutrient uptake when glucose (Glc) and glutamine are limiting. In low glutamine and Glc medium, tet-induced Mgat5 alone increased amino acids uptake, intracellular levels of glycolytic and TCA intermediates, as well as HEK293 cell growth. More specifically, tet-induced Mgat5 and HBP elevated the import rate of glutamine, although transport of other metabolites may be regulated in parallel. Our results suggest that N-glycan branching cooperates with HBP to regulate metabolite import in a cell autonomous manner, and can enhance cell growth in low-nutrient environments.


Asunto(s)
N-Acetilglucosaminiltransferasas/fisiología , Aminoácidos/metabolismo , Animales , Proteínas Aviares , Transporte Biológico , Vías Biosintéticas , Conformación de Carbohidratos , Proliferación Celular , Pollos , Glucólisis , Glicosilación , Células HEK293 , Células HeLa , Hexosaminas/biosíntesis , Humanos
18.
Anal Chim Acta ; 845: 53-61, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25201272

RESUMEN

Metabolomics is the identification and quantitation of small bio-molecules (metabolites) in biological samples under various environmental and genetic conditions. Mass spectrometry provides the unique opportunity for targeted identification and quantification of known metabolites by selective reaction monitoring (SRM). However, reproducibility of this approach depends on careful consideration of sample preparation, chemical classes, and stability of metabolites to be evaluated. Herein, we introduce and validate a targeted metabolite profiling workflow for cultured cells and tissues by liquid chromatography-triple quadrupole tandem mass spectrometry. The method requires a one-step extraction of water-soluble metabolites and targeted analysis of central metabolites that include glycolysis, amino acids, nucleotides, citric acid cycle, and the hexosamine biosynthetic pathway. The sensitivity, reproducibility and molecular stability of each targeted metabolite were assessed under experimental conditions. Quantitation of metabolites by peak area ratio was linear with a dilution over a 4 fold dynamic range with minimal deviation R(2)=0.98. Inter- and intra-day precision with cells and tissues had an average coefficient of variation <15% for cultured cell lines, and somewhat higher for mouse liver tissues. The method applied in triplicate measurements readily distinguished immortalized cells from malignant cells, as well as mouse littermates based on their hepatic metabolic profiles.


Asunto(s)
Espectrometría de Masas , Metabolómica/métodos , Aminoácidos/análisis , Aminoácidos/metabolismo , Animales , Células Cultivadas , Ácido Cítrico/análisis , Ácido Cítrico/metabolismo , Ciclo del Ácido Cítrico , Células HEK293 , Células HeLa , Hexosaminas/análisis , Hexosaminas/biosíntesis , Humanos , Ratones , Nucleótidos/análisis , Nucleótidos/metabolismo
19.
J Biol Chem ; 289(23): 15927-41, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24742675

RESUMEN

Glucose homeostasis in mammals is dependent on the opposing actions of insulin and glucagon. The Golgi N-acetylglucosaminyltransferases encoded by Mgat1, Mgat2, Mgat4a/b/c, and Mgat5 modify the N-glycans on receptors and solute transporter, possibly adapting activities in response to the metabolic environment. Herein we report that Mgat5(-/-) mice display diminished glycemic response to exogenous glucagon, together with increased insulin sensitivity. Glucagon receptor signaling and gluconeogenesis in Mgat5(-/-) cultured hepatocytes was impaired. In HEK293 cells, signaling by ectopically expressed glucagon receptor was increased by Mgat5 expression and GlcNAc supplementation to UDP-GlcNAc, the donor substrate shared by Mgat branching enzymes. The mobility of glucagon receptor in primary hepatocytes was reduced by galectin-9 binding, and the strength of the interaction was dependent on Mgat5 and UDP-GlcNAc levels. Finally, oral GlcNAc supplementation rescued the glucagon response in Mgat5(-/-) hepatocytes and mice, as well as glycolytic metabolites and UDP-GlcNAc levels in liver. Our results reveal that the hexosamine biosynthesis pathway and GlcNAc salvage contribute to glucose homeostasis through N-glycan branching on glucagon receptor.


Asunto(s)
Hexosaminas/biosíntesis , Polisacáridos/metabolismo , Receptores de Glucagón/metabolismo , Animales , Cromatografía Liquida , Glucagón/farmacología , Células HEK293 , Humanos , Hipoglucemia/metabolismo , Hipoglucemia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Espectrometría de Masas en Tándem
20.
Sci Signal ; 7(313): ra17, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550542

RESUMEN

Adaptor proteins link surface receptors to intracellular signaling pathways and potentially control the way cells respond to nutrient availability. Mice deficient in p66Shc, the most recently evolved isoform of the Shc1 adaptor proteins and a mediator of receptor tyrosine kinase signaling, display resistance to diabetes and obesity. Using quantitative mass spectrometry, we found that p66Shc inhibited glucose metabolism. Depletion of p66Shc enhanced glycolysis and increased the allocation of glucose-derived carbon into anabolic metabolism, characteristics of a metabolic shift called the Warburg effect. This change in metabolism was mediated by the mammalian target of rapamycin (mTOR) because inhibition of mTOR with rapamycin reversed the glycolytic phenotype caused by p66Shc deficiency. Thus, unlike the other isoforms of Shc1, p66Shc appears to antagonize insulin and mTOR signaling, which limits glucose uptake and metabolism. Our results identify a critical inhibitory role for p66Shc in anabolic metabolism.


Asunto(s)
Glucólisis/fisiología , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Glucosa/genética , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Células HeLa , Humanos , Ratones , Ratones Noqueados , Proteínas Adaptadoras de la Señalización Shc/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA