Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Med ; 29(7): 1814-1820, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37460754

RESUMEN

Predictive artificial intelligence (AI) systems based on deep learning have been shown to achieve expert-level identification of diseases in multiple medical imaging settings, but can make errors in cases accurately diagnosed by clinicians and vice versa. We developed Complementarity-Driven Deferral to Clinical Workflow (CoDoC), a system that can learn to decide between the opinion of a predictive AI model and a clinical workflow. CoDoC enhances accuracy relative to clinician-only or AI-only baselines in clinical workflows that screen for breast cancer or tuberculosis (TB). For breast cancer screening, compared to double reading with arbitration in a screening program in the UK, CoDoC reduced false positives by 25% at the same false-negative rate, while achieving a 66% reduction in clinician workload. For TB triaging, compared to standalone AI and clinical workflows, CoDoC achieved a 5-15% reduction in false positives at the same false-negative rate for three of five commercially available predictive AI systems. To facilitate the deployment of CoDoC in novel futuristic clinical settings, we present results showing that CoDoC's performance gains are sustained across several axes of variation (imaging modality, clinical setting and predictive AI system) and discuss the limitations of our evaluation and where further validation would be needed. We provide an open-source implementation to encourage further research and application.


Asunto(s)
Inteligencia Artificial , Triaje , Reproducibilidad de los Resultados , Flujo de Trabajo , Humanos
2.
Ophthalmol Sci ; 3(3): 100294, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37113474

RESUMEN

Purpose: To study the individual course of retinal changes caused by healthy aging using deep learning. Design: Retrospective analysis of a large data set of retinal OCT images. Participants: A total of 85 709 adults between the age of 40 and 75 years of whom OCT images were acquired in the scope of the UK Biobank population study. Methods: We created a counterfactual generative adversarial network (GAN), a type of neural network that learns from cross-sectional, retrospective data. It then synthesizes high-resolution counterfactual OCT images and longitudinal time series. These counterfactuals allow visualization and analysis of hypothetical scenarios in which certain characteristics of the imaged subject, such as age or sex, are altered, whereas other attributes, crucially the subject's identity and image acquisition settings, remain fixed. Main Outcome Measures: Using our counterfactual GAN, we investigated subject-specific changes in the retinal layer structure as a function of age and sex. In particular, we measured changes in the retinal nerve fiber layer (RNFL), combined ganglion cell layer plus inner plexiform layer (GCIPL), inner nuclear layer to the inner boundary of the retinal pigment epithelium (INL-RPE), and retinal pigment epithelium (RPE). Results: Our counterfactual GAN is able to smoothly visualize the individual course of retinal aging. Across all counterfactual images, the RNFL, GCIPL, INL-RPE, and RPE changed by -0.1 µm ± 0.1 µm, -0.5 µm ± 0.2 µm, -0.2 µm ± 0.1 µm, and 0.1 µm ± 0.1 µm, respectively, per decade of age. These results agree well with previous studies based on the same cohort from the UK Biobank population study. Beyond population-wide average measures, our counterfactual GAN allows us to explore whether the retinal layers of a given eye will increase in thickness, decrease in thickness, or stagnate as a subject ages. Conclusion: This study demonstrates how counterfactual GANs can aid research into retinal aging by generating high-resolution, high-fidelity OCT images, and longitudinal time series. Ultimately, we envision that they will enable clinical experts to derive and explore hypotheses for potential imaging biomarkers for healthy and pathologic aging that can be refined and tested in prospective clinical trials. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

3.
Med Image Anal ; 75: 102274, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731777

RESUMEN

Supervised deep learning models have proven to be highly effective in classification of dermatological conditions. These models rely on the availability of abundant labeled training examples. However, in the real-world, many dermatological conditions are individually too infrequent for per-condition classification with supervised learning. Although individually infrequent, these conditions may collectively be common and therefore are clinically significant in aggregate. To prevent models from generating erroneous outputs on such examples, there remains a considerable unmet need for deep learning systems that can better detect such infrequent conditions. These infrequent 'outlier' conditions are seen very rarely (or not at all) during training. In this paper, we frame this task as an out-of-distribution (OOD) detection problem. We set up a benchmark ensuring that outlier conditions are disjoint between the model training, validation, and test sets. Unlike traditional OOD detection benchmarks where the task is to detect dataset distribution shift, we aim at the more challenging task of detecting subtle differences resulting from a different pathology or condition. We propose a novel hierarchical outlier detection (HOD) loss, which assigns multiple abstention classes corresponding to each training outlier class and jointly performs a coarse classification of inliers vs. outliers, along with fine-grained classification of the individual classes. We demonstrate that the proposed HOD loss based approach outperforms leading methods that leverage outlier data during training. Further, performance is significantly boosted by using recent representation learning methods (BiT, SimCLR, MICLe). Further, we explore ensembling strategies for OOD detection and propose a diverse ensemble selection process for the best result. We also perform a subgroup analysis over conditions of varying risk levels and different skin types to investigate how OOD performance changes over each subgroup and demonstrate the gains of our framework in comparison to baseline. Furthermore, we go beyond traditional performance metrics and introduce a cost matrix for model trust analysis to approximate downstream clinical impact. We use this cost matrix to compare the proposed method against the baseline, thereby making a stronger case for its effectiveness in real-world scenarios.


Asunto(s)
Dermatología , Benchmarking , Humanos
4.
Med Image Anal ; 74: 102208, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34487984

RESUMEN

Unsupervised abnormality detection is an appealing approach to identify patterns that are not present in training data without specific annotations for such patterns. In the medical imaging field, methods taking this approach have been proposed to detect lesions. The appeal of this approach stems from the fact that it does not require lesion-specific supervision and can potentially generalize to any sort of abnormal patterns. The principle is to train a generative model on images from healthy individuals to estimate the distribution of images of the normal anatomy, i.e., a normative distribution, and detect lesions as out-of-distribution regions. Restoration-based techniques that modify a given image by taking gradient ascent steps with respect to a posterior distribution composed of a normative distribution and a likelihood term recently yielded state-of-the-art results. However, these methods do not explicitly model ascent directions with respect to the normative distribution, i.e. normative ascent direction, which is essential for successful restoration. In this work, we introduce a novel approach for unsupervised lesion detection by modeling normative ascent directions. We present different modelling options based on the defined ascent directions with local Gaussians. We further extend the proposed method to efficiently utilize 3D information, which has not been explored in most existing works. We experimentally show that the proposed method provides higher accuracy in detection and produces more realistic restored images. The performance of the proposed method is evaluated against baselines on publicly available BRATS and ATLAS stroke lesion datasets; the detection accuracy of the proposed method surpasses the current state-of-the-art results.


Asunto(s)
Accidente Cerebrovascular , Humanos
5.
IEEE Trans Med Imaging ; 38(11): 2596-2606, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30908196

RESUMEN

In this paper, we introduce and compare different approaches for incorporating shape prior information into neural network-based image segmentation. Specifically, we introduce the concept of template transformer networks, where a shape template is deformed to match the underlying structure of interest through an end-to-end trained spatial transformer network. This has the advantage of explicitly enforcing shape priors, and this is free of discretization artifacts by providing a soft partial volume segmentation. We also introduce a simple yet effective way of incorporating priors in the state-of-the-art pixel-wise binary classification methods such as fully convolutional networks and U-net. Here, the template shape is given as an additional input channel, incorporating this information significantly reduces false positives. We report results on synthetic data and sub-voxel segmentation of coronary lumen structures in cardiac computed tomography showing the benefit of incorporating priors in neural network-based image segmentation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Algoritmos , Vasos Coronarios/diagnóstico por imagen , Humanos , Tomografía Computarizada por Rayos X
6.
IEEE Trans Neural Netw Learn Syst ; 30(11): 3409-3418, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30714933

RESUMEN

One of the main concerns of deep reinforcement learning (DRL) is the data inefficiency problem, which stems both from an inability to fully utilize data acquired and from naive exploration strategies. In order to alleviate these problems, we propose a DRL algorithm that aims to improve data efficiency via both the utilization of unrewarded experiences and the exploration strategy by combining ideas from unsupervised auxiliary tasks, intrinsic motivation, and hierarchical reinforcement learning (HRL). Our method is based on a simple HRL architecture with a metacontroller and a subcontroller. The subcontroller is intrinsically motivated by the metacontroller to learn to control aspects of the environment, with the intention of giving the agent: 1) a neural representation that is generically useful for tasks that involve manipulation of the environment and 2) the ability to explore the environment in a temporally extended manner through the control of the metacontroller. In this way, we reinterpret the notion of pixel- and feature-control auxiliary tasks as reusable skills that can be learned via an intrinsic reward. We evaluate our method on a number of Atari 2600 games. We found that it outperforms the baseline in several environments and significantly improves performance in one of the hardest games-Montezuma's revenge-for which the ability to utilize sparse data is key. We found that the inclusion of intrinsic reward is crucial for the improvement in the performance and that most of the benefit seems to be derived from the representations learned during training.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...