Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 24(11): e202300170, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37057969

RESUMEN

Mass spectrometry-based high-throughput screening methods combine the advantages of photometric or fluorometric assays and analytical chromatography, as they are reasonably fast (throughput ≥1 sample/min) and broadly applicable, with no need for labelled substrates or products. However, the established MS-based screening approaches require specialised and expensive hardware, which limits their broad use throughout the research community. We show that a more common instrumental platform, a single-quadrupole HPLC-MS, can be used to rapidly analyse diverse biotransformations by flow-injection mass spectrometry (FIA-MS), that is, by automated infusion of samples to the ESI-MS detector without prior chromatographic separation. Common organic buffers can be employed as internal standard for quantification, and the method provides readily validated activity and selectivity information with an analytical run time of one minute per sample. We report four application examples that cover a broad range of analyte structures and concentrations (0.1-50 mM before dilution) and diverse biocatalyst preparations (crude cell lysates and whole microbial cells). Our results establish FIA-MS as a versatile and reliable alternative to more traditional methods for screening enzymatic reactions.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/métodos , Ensayos Analíticos de Alto Rendimiento/métodos
2.
Adv Synth Catal ; 363(12): 3138-3143, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34413715

RESUMEN

The substrate scope of the asymmetric allylation with zinc organyls catalyzed by 3,3-bis(2,4,6-triisopropylphenyl)-1,1-binaphthyl-2,2-diyl hydrogenphosphate (TRIP) has been extended to non-cyclic ester organozinc reagents and ketones. Tertiary chiral alcohols are obtained with ee's up to 94% and two stereogenic centers can be created. Compared to the previous lactone reagent the stereopreference switches almost completely, proving the fact that the nature of the organometallic compound is of immense importance for the asymmetry of the product.

3.
J Am Chem Soc ; 143(12): 4732-4740, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33729783

RESUMEN

Nitrogen heterocycles (azacycles) are common structural motifs in numerous pharmaceuticals, agrochemicals, and natural products. Many powerful methods have been developed and continue to be advanced for the selective installation and modification of nitrogen heterocycles through C-H functionalization and C-C cleavage approaches, revealing new strategies for the synthesis of targets containing these structural entities. Here, we report the first total syntheses of the lycodine-type Lycopodium alkaloids casuarinine H, lycoplatyrine B, lycoplatyrine A, and lycopladine F as well as the total synthesis of 8,15-dihydrohuperzine A through bioinspired late-stage diversification of a readily accessible common precursor, N-desmethyl-ß-obscurine. Key steps in the syntheses include oxidative C-C bond cleavage of a piperidine ring in the core structure of the obscurine intermediate and site-selective C-H borylation of a pyridine nucleus to enable cross-coupling reactions.


Asunto(s)
Alcaloides/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Alcaloides/química , Compuestos Heterocíclicos de 4 o más Anillos/química , Lycopodium/química , Estructura Molecular , Estereoisomerismo
4.
Chembiochem ; 22(4): 652-656, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33090643

RESUMEN

Broad substrate tolerance and excellent regioselectivity, as well as independence from sensitive cofactors have established benzoic acid decarboxylases from microbial sources as efficient biocatalysts. Robustness under process conditions makes them particularly attractive for preparative-scale applications. The divalent metal-dependent enzymes are capable of catalyzing the reversible non-oxidative (de)carboxylation of a variety of electron-rich (hetero)aromatic substrates analogously to the chemical Kolbe-Schmitt reaction. Elemental mass spectrometry supported by crystal structure elucidation and quantum chemical calculations verified the presence of a catalytically relevant Mg2+ complexed in the active site of 2,3-dihydroxybenoic acid decarboxylase from Aspergillus oryzae (2,3-DHBD_Ao). This unique example with respect to the nature of the metal is in contrast to mechanistically related decarboxylases, which generally have Zn2+ or Mn2+ as the catalytically active metal.


Asunto(s)
Aspergillus oryzae/enzimología , Carboxiliasas/química , Carboxiliasas/metabolismo , Hidroxibenzoatos/metabolismo , Magnesio/metabolismo , Catálisis , Cinética , Magnesio/química , Especificidad por Sustrato , Termodinámica
5.
Adv Synth Catal ; 361(11): 2402-2420, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31379472

RESUMEN

The utilization of carbon dioxide as a C1-building block for the production of valuable chemicals has recently attracted much interest. Whereas chemical CO2 fixation is dominated by C-O and C-N bond forming reactions, the development of novel concepts for the carboxylation of C-nucleophiles, which leads to the formation of carboxylic acids, is highly desired. Beside transition metal catalysis, biocatalysis has emerged as an attractive method for the highly regioselective (de)carboxylation of electron-rich (hetero)aromatics, which has been recently further expanded to include conjugated α,ß-unsaturated (acrylic) acid derivatives. Depending on the type of substrate, different classes of enzymes have been explored for (i) the ortho-carboxylation of phenols catalyzed by metal-dependent ortho-benzoic acid decarboxylases and (ii) the side-chain carboxylation of para-hydroxystyrenes mediated by metal-independent phenolic acid decarboxylases. Just recently, the portfolio of bio-carboxylation reactions was complemented by (iii) the para-carboxylation of phenols and the decarboxylation of electron-rich heterocyclic and acrylic acid derivatives mediated by prenylated FMN-dependent decarboxylases, which is the main focus of this review. Bio(de)carboxylation processes proceed under physiological reaction conditions employing bicarbonate or (pressurized) CO2 when running in the energetically uphill carboxylation direction. Aiming to facilitate the application of these enzymes in preparative-scale biotransformations, their catalytic mechanism and substrate scope are analyzed in this review.

6.
Org Lett ; 20(17): 5139-5143, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30110168

RESUMEN

The operability and substrate scope of a redesigned vinylphenol hydratase as a single biocatalyst or as part of multienzyme cascades using either substituted coumaric acids or phenols as stable, cheap, and readily available substrates are reported.

7.
ACS Catal ; 8(3): 2438-2442, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29527405

RESUMEN

The promiscuous regio- and stereoselective hydration of 4-hydroxystyrenes catalyzed by ferulic acid decarboxylase from Enterobacter sp. (FDC_Es) depends on bicarbonate bound in the active site, which serves as a proton relay activating a water molecule for nucleophilic attack on a quinone methide electrophile. This "cofactor" is crucial for achieving improved conversions and high stereoselectivities for (S)-configured benzylic alcohol products. Similar effects were observed with simple aliphatic carboxylic acids as additives. A rational redesign of the active site by replacing the bicarbonate or acetate "cofactor" with a newly introduced side-chain carboxylate from an adjacent amino acid yielded mutants that efficiently acted as C=C hydratases. A single-point mutation of valine 46 to glutamate or aspartate improved the hydration activity by 40% and boosted the stereoselectivity 39-fold in the absence of bicarbonate or acetate.

8.
Front Chem ; 6: 608, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619817

RESUMEN

The C-C bond cleavage catalyzed by metal-dependent iso-orotate decarboxylase (IDCase) from the thymidine salvage pathway is of interest for the elucidation of a (hypothetical) DNA demethylation pathway. IDCase appears also as a promising candidate for the synthetic regioselective carboxylation of N-heteroaromatics. Herein, we report a joint experimental-theoretical study to gain insights into the metal identity, reaction mechanism, and substrate specificity of IDCase. In contrast to previous assumptions, the enzyme is demonstrated by ICPMS/MS measurements to contain a catalytically relevant Mn2+ rather than Zn2+. Quantum chemical calculations revealed that decarboxylation of the natural substrate (5-carboxyuracil) proceeds via a (reverse) electrophilic aromatic substitution with formation of CO2. The occurrence of previously proposed tetrahedral carboxylate intermediates with concomitant formation of HCO 3 - could be ruled out on the basis of prohibitively high energy barriers. In contrast to related o-benzoic acid decarboxylases, such as γ-resorcylate decarboxylase and 5-carboxyvanillate decarboxylase, which exhibit a relaxed substrate tolerance for phenolic acids, IDCase shows high substrate fidelity. Structural and energy comparisons suggest that this is caused by a unique hydrogen bonding of the heterocyclic natural substrate (5-carboxyuracil) to the surrounding residues. Analysis of calculated energies also shows that the reverse carboxylation of uracil is impeded by a strongly disfavored uphill reaction.

9.
Angew Chem Int Ed Engl ; 56(44): 13893-13897, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-28857436

RESUMEN

The utilization of CO2 as a carbon source for organic synthesis meets the urgent demand for more sustainability in the production of chemicals. Herein, we report on the enzyme-catalyzed para-carboxylation of catechols, employing 3,4-dihydroxybenzoic acid decarboxylases (AroY) that belong to the UbiD enzyme family. Crystal structures and accompanying solution data confirmed that AroY utilizes the recently discovered prenylated FMN (prFMN) cofactor, and requires oxidative maturation to form the catalytically competent prFMNiminium species. This study reports on the in vitro reconstitution and activation of a prFMN-dependent enzyme that is capable of directly carboxylating aromatic catechol substrates under ambient conditions. A reaction mechanism for the reversible decarboxylation involving an intermediate with a single covalent bond between a quinoid adduct and cofactor is proposed, which is distinct from the mechanism of prFMN-associated 1,3-dipolar cycloadditions in related enzymes.

10.
Adv Synth Catal ; 359(12): 2066-2075, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28713228

RESUMEN

The catalytic promiscuity of a ferulic acid decarboxylase from Enterobacter sp. (FDC_Es) and phenolic acid decarboxylases (PADs) for the asymmetric conjugate addition of water across the C=C bond of hydroxystyrenes was extended to the N-, C- and S-nucleophiles methoxyamine, cyanide and propanethiol to furnish the corresponding addition products in up to 91% ee. The products obtained from the biotransformation employing the most suitable enzyme/nucleophile pairs were isolated and characterized after optimizing the reaction conditions. Finally, a mechanistic rationale supported by quantum mechanical calculations for the highly (S)-selective addition of cyanide is proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA