RESUMEN
Background: Alkyl esters of para-hydroxybenzoic acid, colloquially known as parabens, are types of preservatives found in multiple foodstuffs, pharmaceuticals, and personal care products to which Americans are exposed daily. It is unclear if parabens exhibit endocrine-disrupting properties. Parabens may interact with triglycerides in adipose tissue and impact lipid metabolism. Objective: To evaluate the association between urinary paraben concentrations and serum triglyceride concentrations. Design: A cross-sectional study. Setting. The Mobile Examination Centers affiliated with 2013-2014 NHANES. Participant(s). 827 adults (20 years or older) affiliated with the 2013-2014 NHANES. Intervention(s). None. Main Outcome Measure(s). Triglyceride levels were associated with urinary paraben concentrations (methyl, ethyl, and propyl) using a hierarchical multiple regression, adjusting for ethnicity/race, gender, BMI, and age. Unadjusted results are also reported. Results: The geometric mean of the urinary concentration of methylparaben, ethylparaben, and propylparaben was 57.100, 2.537, and 6.537 ng/ml, respectively. Triglyceride concentrations were inversely associated with methylparaben (ß = -0.092, P=0.07), ethylparaben (ß = -0.066, P=0.045), and propylparaben (ß = -0.076, P=0.025). Being female, non-Hispanic White, and non-Hispanic Black were associated with decreasing triglyceride levels in the presence of methylparaben, ethylparaben, and propylparaben, and age, BMI, and being male were associated with increasing circulating triglycerides. Conclusion: Despite the potential detrimental effects of parabens on triglycerides, our results suggest that urinary excretions of methylparaben, ethylparaben, and propylparaben are associated with lower concentrations of circulating triglycerides in certain populations. Further research is needed to confirm the mechanisms and health impact of this relationship.
Asunto(s)
Conservantes de Alimentos/análisis , Parabenos/análisis , Conservadores Farmacéuticos/análisis , Triglicéridos/sangre , Adulto , Anciano , Estudios Transversales , Femenino , Conservantes de Alimentos/química , Humanos , Masculino , Persona de Mediana Edad , Encuestas Nutricionales , Parabenos/química , Conservadores Farmacéuticos/químicaRESUMEN
Autophagy is a conserved catabolic process that plays an important role in cellular homeostasis. The study of the interplay between autophagy and zinc has gained interest over the last years. Multiple studies have indicated that zinc stimulates autophagy and is critical for basal and induced autophagy in mammalian cells. Conversely, autophagy is induced by zinc starvation in yeast. There are no studies analyzing the role of zinc in either Microautophagy or Chaperone-Mediated-Autophagy. The mechanisms by which zinc modulates autophagy are still poorly understood. Studies examining loss of function of genes involved in cellular zinc homeostasis have provided novel insights into the role of zinc in autophagy. Autophagy may help cells adapt to changes in zinc availability in medium by controlling zinc mobilization, recycling, and secretion. Zinc is a key player in toxic and protective autophagy.