Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 39(1): 110602, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385755

RESUMEN

Up to 15% of human cancers maintain their telomeres through a telomerase-independent mechanism, termed "alternative lengthening of telomeres" (ALT) that relies on homologous recombination between telomeric sequences. Emerging evidence suggests that the recombinogenic nature of ALT telomeres results from the formation of RNA:DNA hybrids (R-loops) between telomeric DNA and the long-noncoding telomeric repeat-containing RNA (TERRA). Here, we show that the mismatch repair protein MutSß, a heterodimer of MSH2 and MSH3 subunits, is enriched at telomeres in ALT cancer cells, where it prevents the accumulation of telomeric G-quadruplex (G4) structures and R-loops. Cells depleted of MSH3 display increased incidence of R-loop-dependent telomere fragility and accumulation of telomeric C-circles. We also demonstrate that purified MutSß recognizes and destabilizes G4 structures in vitro. These data suggest that MutSß destabilizes G4 structures in ALT telomeres to regulate TERRA R-loops, which is a prerequisite for maintenance of telomere integrity during ALT.


Asunto(s)
Neoplasias , ARN Largo no Codificante , ADN/metabolismo , Humanos , Neoplasias/genética , Estructuras R-Loop , ARN Largo no Codificante/metabolismo , Telómero/metabolismo , Homeostasis del Telómero
2.
Proc Natl Acad Sci U S A ; 117(28): 16527-16536, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601218

RESUMEN

Folate deprivation drives the instability of a group of rare fragile sites (RFSs) characterized by CGG trinucleotide repeat (TNR) sequences. Pathological expansion of the TNR within the FRAXA locus perturbs DNA replication and is the major causative factor for fragile X syndrome, a sex-linked disorder associated with cognitive impairment. Although folate-sensitive RFSs share many features with common fragile sites (CFSs; which are found in all individuals), they are induced by different stresses and share no sequence similarity. It is known that a pathway (termed MiDAS) is employed to complete the replication of CFSs in early mitosis. This process requires RAD52 and is implicated in generating translocations and copy number changes at CFSs in cancers. However, it is unclear whether RFSs also utilize MiDAS and to what extent the fragility of CFSs and RFSs arises by shared or distinct mechanisms. Here, we demonstrate that MiDAS does occur at FRAXA following folate deprivation but proceeds via a pathway that shows some mechanistic differences from that at CFSs, being dependent on RAD51, SLX1, and POLD3. A failure to complete MiDAS at FRAXA leads to severe locus instability and missegregation in mitosis. We propose that break-induced DNA replication is required for the replication of FRAXA under folate stress and define a cellular function for human SLX1. These findings provide insights into how folate deprivation drives instability in the human genome.


Asunto(s)
Endodesoxirribonucleasas/metabolismo , Ácido Fólico/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Mitosis , Recombinasa Rad51/metabolismo , ADN/genética , ADN/metabolismo , Reparación del ADN , Endodesoxirribonucleasas/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Humanos , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinasas/genética , Recombinasas/metabolismo
3.
Nucleic Acids Res ; 45(16): 9427-9440, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934474

RESUMEN

DNA mismatch repair (MMR) is a highly-conserved DNA repair mechanism, whose primary role is to remove DNA replication errors preventing them from manifesting as mutations, thereby increasing the overall genome stability. Defects in MMR are associated with increased cancer risk in humans and other organisms. Here, we characterize the interaction between MMR and a proofreading-deficient allele of the human replicative DNA polymerase delta, PolδD316A;E318A, which has a higher capacity for strand displacement DNA synthesis than wild type Polδ. Human cell lines overexpressing PolδD316A;E318A display a mild mutator phenotype, while nuclear extracts of these cells exhibit reduced MMR activity in vitro, and these defects are complemented by overexpression or addition of exogenous human Exonuclease 1 (EXO1). By contrast, another proofreading-deficient mutant, PolδD515V, which has a weaker strand displacement activity, does not decrease the MMR activity as significantly as PolδD316A;E318A. In addition, PolδD515V does not increase the mutation frequency in MMR-proficient cells. Based on our findings, we propose that the proofreading activity restricts the strand displacement activity of Polδ in MMR. This contributes to maintain the nicks required for EXO1 entry, and in this manner ensures the dominance of the EXO1-dependent MMR pathway.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN Polimerasa III/metabolismo , Mutación , Metilación de ADN/efectos de los fármacos , ADN Polimerasa III/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Células HeLa , Humanos , Metilnitronitrosoguanidina/farmacología
5.
Cell Oncol (Dordr) ; 40(4): 341-355, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28536927

RESUMEN

BACKGROUND: Testicular germ cell tumours (TGCT) are highly sensitive to cisplatin-based chemotherapy, but patients with tumours containing differentiated teratoma components are less responsive to this treatment. The cisplatin sensitivity in TGCT has previously been linked to the embryonic phenotype in the majority of tumours, although the underlying mechanism largely remains to be elucidated. The aim of this study was to investigate the role of the DNA mismatch repair (MMR) system in the cisplatin sensitivity of TGCT. METHODS: The expression pattern of key MMR proteins, including MSH2, MSH6, MLH1 and PMS2, were investigated during testis development and in the pathogenesis of TGCT, including germ cell neoplasia in situ (GCNIS). The TGCT-derived cell line NTera2 was differentiated using retinoic acid (10 µM, 6 days) after which MMR protein expression and activity, as well as cisplatin sensitivity, were investigated in both undifferentiated and differentiated cells. Finally, the expression of MSH2 was knocked down by siRNA in NTera2 cells after which the effect on cisplatin sensitivity was examined. RESULTS: MMR proteins were expressed in proliferating cells in the testes, while in malignant germ cells MMR protein expression was found to coincide with the expression of the pluripotency factor OCT4, with no or low expression in the more differentiated yolk sac tumours, choriocarcinomas and teratomas. In differentiated NTera2 cells we found a significantly (p < 0.05) lower expression of the MMR and pluripotency factors, as well as a reduced MMR activity and cisplatin sensitivity, compared to undifferentiated NTera2 cells. Also, we found that partial knockdown of MSH2 expression in undifferentiated NTera2 cells resulted in a significantly (p < 0.001) reduced cisplatin sensitivity. CONCLUSION: This study reports, for the first time, expression of the MMR system in fetal gonocytes, from which GCNIS cells are derived. Our findings in primary TGCT specimens and TGCT-derived cells suggest that a reduced sensitivity to cisplatin in differentiated TGCT components could result from a reduced expression of MMR proteins, in particular MSH2 and MLH1, which are involved in the recognition of cisplatin adducts and in activation of the DNA damage response pathway to initiate apoptosis.


Asunto(s)
Cisplatino/uso terapéutico , Reparación de la Incompatibilidad de ADN/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias Testiculares/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/metabolismo , Interferencia de ARN , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patología
6.
Nucleic Acids Res ; 44(6): 2691-705, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26743004

RESUMEN

During class switch recombination (CSR), antigen-stimulated B-cells rearrange their immunoglobulin constant heavy chain (CH) loci to generate antibodies with different effector functions. CSR is initiated by activation-induced deaminase (AID), which converts cytosines in switch (S) regions, repetitive sequences flanking the CH loci, to uracils. Although U/G mispairs arising in this way are generally efficiently repaired to C/Gs by uracil DNA glycosylase (UNG)-initiated base excision repair (BER), uracil processing in S-regions of activated B-cells occasionally gives rise to double strand breaks (DSBs), which trigger CSR. Surprisingly, genetic experiments revealed that CSR is dependent not only on AID and UNG, but also on mismatch repair (MMR). To elucidate the role of MMR in CSR, we studied the processing of uracil-containing DNA substrates in extracts of MMR-proficient and -deficient human cells, as well as in a system reconstituted from recombinant BER and MMR proteins. Here, we show that the interplay of these repair systems gives rise to DSBs in vitro and to genomic deletions and mutations in vivo, particularly in an S-region sequence. Our findings further suggest that MMR affects pathway choice in DSB repair. Given its amenability to manipulation, our system represents a powerful tool for the molecular dissection of CSR.


Asunto(s)
Linfocitos B/metabolismo , Reparación de la Incompatibilidad de ADN/inmunología , ADN/genética , Cambio de Clase de Inmunoglobulina/genética , Regiones Constantes de Inmunoglobulina/genética , Uracilo/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Línea Celular Tumoral , Citidina Desaminasa/genética , Citidina Desaminasa/inmunología , Citosina/inmunología , Citosina/metabolismo , ADN/inmunología , Roturas del ADN de Doble Cadena , Regulación de la Expresión Génica , Células HEK293 , Humanos , Transducción de Señal , Uracilo/inmunología , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/inmunología
7.
DNA Repair (Amst) ; 38: 147-154, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26708048

RESUMEN

The DNA repair pathway mismatch repair (MMR) is responsible for the recognition and correction of DNA biosynthetic errors caused by inaccurate nucleotide incorporation during replication. Faulty MMR leads to failure to address the mispairs or insertion deletion loops (IDLs) left behind by the replicative polymerases and results in increased mutation load at the genome. The realization that defective MMR leads to a hypermutation phenotype and increased risk of tumorigenesis highlights the relevance of this pathway for human disease. The association of MMR defects with increased risk of cancer development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome (LS) partly to include the associated risk of developing extra-colonic cancers. In addition, a number of non-hereditary, mostly epigenetic, alterations of MMR genes have been described in sporadic tumors. Besides conferring a strong cancer predisposition, genetic or epigenetic inactivation of MMR genes also renders cells resistant to some chemotherapeutic agents. Therefore, diagnosis of MMR deficiency has important implications for the management of the patients, the surveillance of their relatives in the case of LS and for the choice of treatment. Some of the alterations found in MMR genes have already been well defined and their pathogenicity assessed. Despite this substantial wealth of knowledge, the effects of a large number of alterations remain uncharacterized (variants of uncertain significance, VUSs). The advent of personalized genomics is likely to increase the list of VUSs found in MMR genes and anticipates the need of diagnostic tools for rapid assessment of their pathogenicity. This review describes current tools and future strategies for addressing the relevance of MMR gene alterations in human disease.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Mutación/genética , Neoplasias/diagnóstico , Neoplasias/genética , Investigación Biomédica , ADN/metabolismo , Humanos , Estabilidad Proteica
8.
Front Genet ; 5: 287, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25191341

RESUMEN

DNA is constantly under attack by a number of both exogenous and endogenous agents that challenge its integrity. Among the mechanisms that have evolved to counteract this deleterious action, mismatch repair (MMR) has specialized in removing DNA biosynthetic errors that occur when replicating the genome. Malfunction or inactivation of this system results in an increase in spontaneous mutability and a strong predisposition to tumor development. Besides this key corrective role, MMR proteins are involved in other pathways of DNA metabolism such as mitotic and meiotic recombination and processing of oxidative damage. Surprisingly, MMR is also required for certain mutagenic processes. The mutagenic MMR has beneficial consequences contributing to the generation of a vast repertoire of antibodies through class switch recombination and somatic hypermutation processes. However, this non-canonical mutagenic MMR also has detrimental effects; it promotes repeat expansions associated with neuromuscular and neurodegenerative diseases and may contribute to cancer/disease-related aberrant mutations and translocations. The reaction responsible for replication error correction has been the most thoroughly studied and it is the subject to numerous reviews. This review describes briefly the biochemistry of MMR and focuses primarily on the non-canonical MMR activities described in mammals as well as emerging research implicating interplay of MMR and chromatin.

9.
Nucleic Acids Res ; 41(5): 2846-56, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23325852

RESUMEN

Genome-wide gene expression analyses of the human somatic cell cycle have indicated that the set of cycling genes differ between primary and cancer cells. By identifying genes that have cell cycle dependent expression in HaCaT human keratinocytes and comparing these with previously identified cell cycle genes, we have identified three distinct groups of cell cycle genes. First, housekeeping genes enriched for known cell cycle functions; second, cell type-specific genes enriched for HaCaT-specific functions; and third, Polycomb-regulated genes. These Polycomb-regulated genes are specifically upregulated during DNA replication, and consistent with being epigenetically silenced in other cell cycle phases, these genes have lower expression than other cell cycle genes. We also find similar patterns in foreskin fibroblasts, indicating that replication-dependent expression of Polycomb-silenced genes is a prevalent but unrecognized regulatory mechanism.


Asunto(s)
Ciclo Celular/genética , Replicación del ADN , Proteínas del Grupo Polycomb/fisiología , Regulación hacia Arriba , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Islas de CpG , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Genes Esenciales , Histonas/fisiología , Humanos , Queratinocitos/metabolismo , Queratinocitos/fisiología , Análisis de los Mínimos Cuadrados , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Transcriptoma
10.
Mol Cell ; 47(5): 669-80, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22864113

RESUMEN

Mismatch repair (MMR) is a key antimutagenic process that increases the fidelity of DNA replication and recombination. Yet genetic experiments showed that MMR is required for antibody maturation, a process during which the immunoglobulin loci of antigen-stimulated B cells undergo extensive mutagenesis and rearrangements. In an attempt to elucidate the mechanism underlying the latter events, we set out to search for conditions that compromise MMR fidelity. Here, we describe noncanonical MMR (ncMMR), a process in which the MMR pathway is activated by various DNA lesions rather than by mispairs. ncMMR is largely independent of DNA replication, lacks strand directionality, triggers PCNA monoubiquitylation, and promotes recruitment of the error-prone polymerase-η to chromatin. Importantly, ncMMR is not limited to B cells but occurs also in other cell types. Moreover, it contributes to mutagenesis induced by alkylating agents. Activation of ncMMR may therefore play a role in genomic instability and cancer.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Inestabilidad Genómica/genética , Células Cultivadas , Replicación del ADN , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo
11.
Trends Biochem Sci ; 37(5): 206-14, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22475811

RESUMEN

A considerable surge of interest in the mismatch repair (MMR) system has been brought about by the discovery of a link between Lynch syndrome, an inherited predisposition to cancer of the colon and other organs, and malfunction of this key DNA metabolic pathway. This review focuses on recent advances in our understanding of the molecular mechanisms of canonical MMR, which improves replication fidelity by removing misincorporated nucleotides from the nascent DNA strand. We also discuss the involvement of MMR proteins in two other processes: trinucleotide repeat expansion and antibody maturation, in which MMR proteins are required for mutagenesis rather than for its prevention.


Asunto(s)
Disparidad de Par Base/genética , Reparación de la Incompatibilidad de ADN , Replicación del ADN/genética , Mamíferos/genética , Animales , ADN/genética , Humanos , Modelos Genéticos , Expansión de Repetición de Trinucleótido/genética
12.
Environ Mol Mutagen ; 52(8): 623-35, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21786338

RESUMEN

XRCC1 is a scaffold protein capable of interacting with several DNA repair proteins. Here we provide evidence for the presence of XRCC1 in different complexes of sizes from 200 to 1500 kDa, and we show that immunoprecipitates using XRCC1 as bait are capable of complete repair of AP sites via both short patch (SP) and long patch (LP) base excision repair (BER). We show that POLß and PNK colocalize with XRCC1 in replication foci and that POLß and PNK, but not PCNA, colocalize with constitutively present XRCC1-foci as well as damage-induced foci when low doses of a DNA-damaging agent are applied. We demonstrate that the laser dose used for introducing DNA damage determines the repertoire of DNA repair proteins recruited. Furthermore, we demonstrate that recruitment of POLß and PNK to regions irradiated with low laser dose requires XRCC1 and that inhibition of PARylation by PARP-inhibitors only slightly reduces the recruitment of XRCC1, PNK, or POLß to sites of DNA damage. Recruitment of PCNA and FEN-1 requires higher doses of irradiation and is enhanced by XRCC1, as well as by accumulation of PARP-1 at the site of DNA damage. These data improve our understanding of recruitment of BER proteins to sites of DNA damage and provide evidence for a role of XRCC1 in the organization of BER into multiprotein complexes of different sizes.


Asunto(s)
Roturas del ADN de Cadena Simple , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Animales , Western Blotting , Células CHO , Técnicas de Cultivo de Célula , Cricetinae , Cricetulus , Roturas del ADN de Cadena Simple/efectos de la radiación , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Relación Dosis-Respuesta en la Radiación , Células HeLa , Humanos , Inmunoprecipitación , Rayos Láser , Microscopía Confocal , Modelos Biológicos , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
13.
EMBO Rep ; 11(12): 962-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21052091

RESUMEN

End resection of DNA-which is essential for the repair of DNA double-strand breaks (DSBs) by homologous recombination-relies first on the partnership between MRE11-RAD50-NBS1 (MRN) and CtIP, followed by a processive step involving helicases and exonucleases such as exonuclease 1 (EXO1). In this study, we show that the localization of EXO1 to DSBs depends on both CtIP and MRN. We also establish that CtIP interacts with EXO1 and restrains its exonucleolytic activity in vitro. Finally, we show that on exposure to camptothecin, depletion of EXO1 in CtIP-deficient cells increases the frequency of DNA-PK-dependent radial chromosome formation. Thus, our study identifies new functions of CtIP and EXO1 in DNA end resection and provides new information on the regulation of DSB repair pathways, which is a key factor in the maintenance of genome integrity.


Asunto(s)
Proteínas Portadoras/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Exodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Citoprotección , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Células HEK293 , Humanos , Proteína Homóloga de MRE11 , Unión Proteica , Recombinación Genética/genética
15.
DNA Repair (Amst) ; 8(7): 834-43, 2009 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-19442590

RESUMEN

Base excision repair (BER) of damaged or inappropriate bases in DNA has been reported to take place by single nucleotide insertion or through incorporation of several nucleotides, termed short-patch and long-patch repair, respectively. We found that extracts from proliferating and non-proliferating cells both had capacity for single- and two-nucleotide insertion BER activity. However, patch size longer than two nucleotides was only detected in extracts from proliferating cells. Relative to extracts from proliferating cells, extracts from non-proliferating cells had approximately two-fold higher concentration of POLbeta, which contributed to most of two-nucleotide insertion BER. In contrast, two-nucleotide insertion in extracts from proliferating cells was not dependent on POLbeta. BER fidelity was two- to three-fold lower in extracts from the non-proliferating compared with extracts of proliferating cells. Furthermore, although one-nucleotide deletion was the predominant type of repair error in both extracts, the pattern of repair errors was somewhat different. These results establish two-nucleotide patch BER as a distinct POLbeta-dependent mechanism in non-proliferating cells and demonstrate that BER fidelity is lower in extracts from non-proliferating as compared with proliferating cells.


Asunto(s)
Proliferación Celular , Reparación del ADN/fisiología , Linfocitos/metabolismo , Transducción de Señal/fisiología , Secuencia de Bases , Sitios de Unión/genética , Western Blotting , Extractos Celulares/química , Línea Celular , Células Cultivadas , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Linfocitos/química , Linfocitos/citología , Mutación , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Especificidad por Sustrato
16.
DNA Repair (Amst) ; 8(7): 822-33, 2009 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-19411194

RESUMEN

The PA promoter in the human uracil-DNA glycosylase gene (UNG) directs expression of the nuclear form (UNG2) of UNG proteins. Using a combination of promoter deletion and mutation analyses, and transient transfection of HeLa cells, we show that repressor and derepressor activities are contained within the region of DNA marked by PA. Footprinting analysis and electrophoretic mobility shift assays of PA and putative AP-2 binding regions with HeLa cell nuclear extract and recombinant AP-2alpha protein indicate that AP-2 transcription factors are central in the regulated expression of UNG2 mRNA. Chromatin immunoprecipitation with AP-2 antibody demonstrated that endogenous AP-2 binds to the PA promoter in vivo. Overexpression of AP-2alpha, -beta or -gamma all stimulated expression from a PA-luciferase reporter gene construct approximately 3- to 4-fold. Interestingly, an N-terminally truncated AP-2alpha, lacking the activation domain but retaining the DNA binding and dimerization domains, stimulated PA to a level approaching that of full-length AP-2, suggesting that AP-2 overexpression stimulates PA activity by a mechanism involving derepression rather than activation, possibly by neutralizing an inhibitory effect of endogenous AP-2 or AP-2-like factors.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Factor de Transcripción AP-2/metabolismo , Uracil-ADN Glicosidasa/genética , Secuencia de Bases , Sitios de Unión/genética , Factor de Unión a CCAAT/metabolismo , Núcleo Celular/química , Núcleo Celular/metabolismo , Huella de ADN , Desoxirribonucleasa I/metabolismo , Factores de Transcripción E2F/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Expresión Génica , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Datos de Secuencia Molecular , Mutación , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción AP-2/genética , Transfección , Tretinoina/farmacología
17.
J Cell Sci ; 122(Pt 8): 1258-67, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19299466

RESUMEN

RECQL4 belongs to the conserved RecQ family of DNA helicases, members of which play important roles in the maintenance of genome stability in all organisms that have been examined. Although genetic alterations in the RECQL4 gene are reported to be associated with three autosomal recessive disorders (Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes), the molecular role of RECQL4 still remains poorly understood. Here, we show that RECQL4 specifically interacts with the histone acetyltransferase p300 (also known as p300 HAT), both in vivo and in vitro, and that p300 acetylates one or more of the lysine residues at positions 376, 380, 382, 385 and 386 of RECQL4. Furthermore, we report that these five lysine residues lie within a short motif of 30 amino acids that is essential for the nuclear localization of RECQL4. Remarkably, the acetylation of RECQL4 by p300 in vivo leads to a significant shift of a proportion of RECQL4 protein from the nucleus to the cytoplasm. This accumulation of the acetylated RECQL4 is a result of its inability to be imported into the nucleus. Our results provide the first evidence of a post-translational modification of the RECQL4 protein, and suggest that acetylation of RECQL4 by p300 regulates the trafficking of RECQL4 between the nucleus and the cytoplasm.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Procesamiento Proteico-Postraduccional , RecQ Helicasas/metabolismo , Acetilación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteína p300 Asociada a E1A/genética , Células HeLa , Humanos , Lisina , Datos de Secuencia Molecular , Mutación , Señales de Localización Nuclear/metabolismo , Transporte de Proteínas , RecQ Helicasas/química , RecQ Helicasas/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección
18.
EMBO J ; 27(1): 51-61, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18079698

RESUMEN

Human UNG2 is a multifunctional glycosylase that removes uracil near replication forks and in non-replicating DNA, and is important for affinity maturation of antibodies in B cells. How these diverse functions are regulated remains obscure. Here, we report three new phosphoforms of the non-catalytic domain that confer distinct functional properties to UNG2. These are apparently generated by cyclin-dependent kinases through stepwise phosphorylation of S23, T60 and S64 in the cell cycle. Phosphorylation of S23 in late G1/early S confers increased association with replication protein A (RPA) and replicating chromatin and markedly increases the catalytic turnover of UNG2. Conversely, progressive phosphorylation of T60 and S64 throughout S phase mediates reduced binding to RPA and flag UNG2 for breakdown in G2 by forming a cyclin E/c-myc-like phosphodegron. The enhanced catalytic turnover of UNG2 p-S23 likely optimises the protein to excise uracil along with rapidly moving replication forks. Our findings may aid further studies of how UNG2 initiates mutagenic rather than repair processing of activation-induced deaminase-generated uracil at Ig loci in B cells.


Asunto(s)
Ciclo Celular/fisiología , ADN Glicosilasas/metabolismo , Proteína de Replicación A/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Bovinos , ADN Glicosilasas/química , ADN Glicosilasas/genética , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína de Replicación A/fisiología , Serina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Treonina/metabolismo , Uracilo/metabolismo
19.
Nucleic Acids Res ; 35(17): 5706-16, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17715146

RESUMEN

Werner syndrome (WS) is a severe recessive disorder characterized by premature aging, cancer predisposition and genomic instability. The gene mutated in WS encodes a bi-functional enzyme called WRN that acts as a RecQ-type DNA helicase and a 3'-5' exonuclease, but its exact role in DNA metabolism is poorly understood. Here we show that WRN physically interacts with the MSH2/MSH6 (MutSalpha), MSH2/MSH3 (MutSbeta) and MLH1/PMS2 (MutLalpha) heterodimers that are involved in the initiation of mismatch repair (MMR) and the rejection of homeologous recombination. MutSalpha and MutSbeta can strongly stimulate the helicase activity of WRN specifically on forked DNA structures with a 3'-single-stranded arm. The stimulatory effect of MutSalpha on WRN-mediated unwinding is enhanced by a G/T mismatch in the DNA duplex ahead of the fork. The MutLalpha protein known to bind to the MutS alpha-heteroduplex complexes has no effect on WRN-mediated DNA unwinding stimulated by MutSalpha, nor does it affect DNA unwinding by WRN alone. Our data are consistent with results of genetic experiments in yeast suggesting that MMR factors act in conjunction with a RecQ-type helicase to reject recombination between divergent sequences.


Asunto(s)
Disparidad de Par Base , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , RecQ Helicasas/metabolismo , Sitios de Unión , Línea Celular , ADN/química , ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas , Humanos , Proteínas MutL , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga de MutS , Estructura Terciaria de Proteína , RecQ Helicasas/química , Técnicas del Sistema de Dos Híbridos , Helicasa del Síndrome de Werner
20.
Exp Cell Res ; 312(14): 2666-72, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16860315

RESUMEN

Uracil is present in small amounts in DNA due to spontaneous deamination of cytosine and incorporation of dUMP during replication. While deamination generates mutagenic U:G mismatches, incorporated dUMP results in U:A pairs that are not directly mutagenic, but may be cytotoxic. In most cells, mutations resulting from uracil in DNA are prevented by error-free base excision repair. However, in B-cells uracil in DNA is also a physiological intermediate in acquired immunity. Here, activation-induced cytosine deaminase (AID) introduces template uracils that give GC to AT transition mutations in the Ig locus after replication. When uracil-DNA glycosylase (UNG2) removes uracil, error-prone translesion synthesis over the abasic site causes other mutations in the Ig locus. Together, these processes are central to somatic hypermutation (SHM) that increases immunoglobulin diversity. AID and UNG2 are also essential for generation of strand breaks that initiate class switch recombination (CSR). Patients lacking UNG2 display a hyper-IgM syndrome with recurrent infections, increased IgM, strongly decreased IgG, IgA and IgE and skewed SHM. UNG2 is also involved in innate immune response against retroviral infections. Ung(-/-) mice have a similar phenotype and develop B-cell lymphomas late in life. However, there is no evidence indicating that UNG deficiency causes lymphomas in humans.


Asunto(s)
ADN Glicosilasas/genética , Reparación del ADN , ADN/química , Uracilo/fisiología , Animales , Humanos , Inmunidad , Linfoma de Células B/genética , Ratones , Modelos Genéticos , Hipermutación Somática de Inmunoglobulina , Uracil-ADN Glicosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...