Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mov Disord ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616406

RESUMEN

BACKGROUND: X-Linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative disorder characterized by rapidly progressive dystonia and parkinsonism. Mosaic Divergent Repeat Interruptions affecting motif Length and Sequence (mDRILS) were recently found within the TAF1 SVA repeat tract and were shown to associate with repeat stability and age at onset in XDP, specifically the AGGG [5'-SINE-VNTR-Alu(AGAGGG)2AGGG(AGAGGG)n] mDRILS. OBJECTIVE: This study aimed to investigate the stability of mDRILS frequencies and stability of (AGAGGG)n repeat length during transmission in parent-offspring pairs. METHODS: Fifty-six families (n = 130) were investigated for generational transmission of repeat length and mDRILS. The mDRILS stability of 16 individuals was assessed at two sampling points 1 year apart. DNA was sequenced with long-read technologies after long-range polymerase chain reaction amplification of the TAF1 SVA. Repeat number and mDRILS were detected with Noise-Cancelling Repeat Finder (NCRF). RESULTS: When comparing the repeat domain, 51 of 65 children had either contractions or expansions of the repeat length. The AGGG frequency remained stable across generations at 0.074 (IQR: 0.069-0.078) (z = -0.526; P = 0.599). However, the median AGGG frequency in children with an expansion (0.072 [IQR: 0.066-0.076]) was lower compared with children with retention or contraction (0.080 [IQR: 0.073-0.083]) (z = -0.007; P = 0.003). In a logistic regression model, the AGGG frequency predicted the outcome of either expansion or retention/contraction when including repeat number and sex as covariates (ß = 80.7; z-score = 2.63; P = 0.0085). The AGGG frequency varied slightly over 1 year (0.070 [IQR: 0.063-0.080] to 0.073 [IQR: 0.069-0.078]). CONCLUSIONS: Our results show that a higher AGGG frequency may stabilize repeats across generations. This highlights the importance of further investigating mDRILS as a disease-modifying factor with generational differences. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
EBioMedicine ; 101: 105027, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418263

RESUMEN

BACKGROUND: Cardiomyopathy is a clinically and genetically heterogeneous heart condition that can lead to heart failure and sudden cardiac death in childhood. While it has a strong genetic basis, the genetic aetiology for over 50% of cardiomyopathy cases remains unknown. METHODS: In this study, we analyse the characteristics of tandem repeats from genome sequence data of unrelated individuals diagnosed with cardiomyopathy from Canada and the United Kingdom (n = 1216) and compare them to those found in the general population. We perform burden analysis to identify genomic and epigenomic features that are impacted by rare tandem repeat expansions (TREs), and enrichment analysis to identify functional pathways that are involved in the TRE-associated genes in cardiomyopathy. We use Oxford Nanopore targeted long-read sequencing to validate repeat size and methylation status of one of the most recurrent TREs. We also compare the TRE-associated genes to those that are dysregulated in the heart tissues of individuals with cardiomyopathy. FINDINGS: We demonstrate that tandem repeats that are rarely expanded in the general population are predominantly expanded in cardiomyopathy. We find that rare TREs are disproportionately present in constrained genes near transcriptional start sites, have high GC content, and frequently overlap active enhancer H3K27ac marks, where expansion-related DNA methylation may reduce gene expression. We demonstrate the gene silencing effect of expanded CGG tandem repeats in DIP2B through promoter hypermethylation. We show that the enhancer-associated loci are found in genes that are highly expressed in human cardiomyocytes and are differentially expressed in the left ventricle of the heart in individuals with cardiomyopathy. INTERPRETATION: Our findings highlight the underrecognized contribution of rare tandem repeat expansions to the risk of cardiomyopathy and suggest that rare TREs contribute to ∼4% of cardiomyopathy risk. FUNDING: Government of Ontario (RKCY), The Canadian Institutes of Health Research PJT 175329 (RKCY), The Azrieli Foundation (RKCY), SickKids Catalyst Scholar in Genetics (RKCY), The University of Toronto McLaughlin Centre (RKCY, SM), Ted Rogers Centre for Heart Research (SM), Data Sciences Institute at the University of Toronto (SM), The Canadian Institutes of Health Research PJT 175034 (SM), The Canadian Institutes of Health Research ENP 161429 under the frame of ERA PerMed (SM, RL), Heart and Stroke Foundation of Ontario & Robert M Freedom Chair in Cardiovascular Science (SM), Bitove Family Professorship of Adult Congenital Heart Disease (EO), Canada Foundation for Innovation (SWS, JR), Canada Research Chair (PS), Genome Canada (PS, JR), The Canadian Institutes of Health Research (PS).


Asunto(s)
Cardiomiopatías , Cardiopatías Congénitas , Humanos , Adulto , Cardiopatías Congénitas/genética , Secuencias Repetidas en Tándem/genética , Metilación de ADN , Cardiomiopatías/genética , Ontario , Proteínas del Tejido Nervioso/genética
3.
Nat Genet ; 56(3): 383-394, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291334

RESUMEN

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships among CAG expansions, death of specific cell types and molecular events associated with these processes are not established. Here, we used fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise at mHTT in striatal medium spiny neurons (MSNs), cholinergic interneurons and cerebellar Purkinje neurons, and at mutant ATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1. Our data support a model in which CAG expansions are necessary but may not be sufficient for cell death and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.


Asunto(s)
Cuerpo Estriado , Enfermedad de Huntington , Humanos , Animales , Cerebelo/metabolismo , Enfermedad de Huntington/genética , Modelos Animales de Enfermedad
4.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37827155

RESUMEN

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Asunto(s)
Proteína de Replicación A , Expansión de Repetición de Trinucleótido , Animales , Humanos , Ratones , ADN/genética , Reparación de la Incompatibilidad de ADN , Enfermedad de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelosas/genética , Proteína de Replicación A/metabolismo
5.
J Biol Chem ; 299(10): 105202, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660923

RESUMEN

Biallelic expansions of various tandem repeat sequence motifs are possible in RFC1 (replication factor C subunit 1), encoding the DNA replication/repair protein RFC1, yet only certain repeat motifs cause cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). CANVAS presents enigmatic puzzles: The pathogenic path for CANVAS neither is known nor is it understood why some, but not all expanded, motifs are pathogenic. The most common pathogenic repeat is (AAGGG)n•(CCCTT)n, whereas (AAAAG)n•(CTTTT)n is the most common nonpathogenic motif. While both intronic motifs can be expanded and transcribed, only r(AAGGG)n is retained in the mutant RFC1 transcript. We show that only the pathogenic forms unusual nucleic acid structures. Specifically, DNA and RNA of the pathogenic d(AAGGG)4 and r(AAGGG)4 form G-quadruplexes in potassium solution. Nonpathogenic repeats did not form G-quadruplexes. Triple-stranded structures are formed by the pathogenic motifs but not by the nonpathogenic motifs. G- and C-richness of the pathogenic strands favor formation of G•G•G•G-tetrads and protonated C+-G Hoogsteen base pairings, involved in quadruplex and triplex structures, respectively, stabilized by increased hydrogen bonds and pi-stacking interactions relative to A-T Hoogsteen pairs that could form by the nonpathogenic motif. The ligand, TMPyP4, binds the pathogenic quadruplexes. Formation of quadruplexes and triplexes by pathogenic repeats supports toxic-DNA and toxic-RNA modes of pathogenesis at the RFC1 gene and the RFC1 transcript. Our findings with short repeats provide insights into the disease specificity of pathogenic repeat motif sequences and reveal nucleic acid structural features that may be pathogenically involved and targeted therapeutically.

6.
bioRxiv ; 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37333326

RESUMEN

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships between CAG expansions, death of specific cell types, and molecular events associated with these processes are not established. Here we employed fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise in striatal medium spiny neurons (MSNs) and cholinergic interneurons, in cerebellar Purkinje neurons, and at mATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1 in a concentration-dependent manner. Our data indicate that ongoing CAG expansions are not sufficient for cell death, and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.

7.
Brain ; 146(3): 1075-1082, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35481544

RESUMEN

While many genetic causes of movement disorders have been identified, modifiers of disease expression are largely unknown. X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease caused by a SINE-VNTR-Alu(AGAGGG)n retrotransposon insertion in TAF1, with a polymorphic (AGAGGG)n repeat. Repeat length and variants in MSH3 and PMS2 explain ∼65% of the variance in age at onset (AAO) in XDP. However, additional genetic modifiers are conceivably at play in XDP, such as repeat interruptions. Long-read nanopore sequencing of PCR amplicons from XDP patients (n = 202) was performed to assess potential repeat interruption and instability. Repeat-primed PCR and Cas9-mediated targeted enrichment confirmed the presence of identified divergent repeat motifs. In addition to the canonical pure SINE-VNTR-Alu-5'-(AGAGGG)n, we observed a mosaic of divergent repeat motifs that polarized at the beginning of the tract, where the divergent repeat interruptions varied in motif length by having one, two, or three nucleotides fewer than the hexameric motif, distinct from interruptions in other disease-associated repeats, which match the lengths of the canonical motifs. All divergent configurations occurred mosaically and in two investigated brain regions (basal ganglia, cerebellum) and in blood-derived DNA from the same patient. The most common divergent interruption was AGG [5'-SINE-VNTR-Alu(AGAGGG)2AGG(AGAGGG)n], similar to the pure tract, followed by AGGG [5'-SINE-VNTR-Alu(AGAGGG)2AGGG(AGAGGG)n], at median frequencies of 0.425 (IQR: 0.42-0.43) and 0.128 (IQR: 0.12-0.13), respectively. The mosaic AGG motif was not associated with repeat number (estimate = -3.8342, P = 0.869). The mosaic pure tract frequency was associated with repeat number (estimate = 45.32, P = 0.0441) but not AAO (estimate = -41.486, P = 0.378). Importantly, the mosaic frequency of the AGGG negatively correlated with repeat number after adjusting for age at sampling (estimate = -161.09, P = 3.44 × 10-5). When including the XDP-relevant MSH3/PMS2 modifier single nucleotide polymorphisms into the model, the mosaic AGGG frequency was associated with AAO (estimate = 155.1063, P = 0.047); however, the association dissipated after including the repeat number (estimate = -92.46430, P = 0.079). We reveal novel mosaic divergent repeat interruptions affecting both motif length and sequence (DRILS) of the canonical motif polarized within the SINE-VNTR-Alu(AGAGGG)n repeat. Our study illustrates: (i) the importance of somatic mosaic genotypes; (ii) the biological plausibility of multiple modifiers (both germline and somatic) that can have additive effects on repeat instability; and (iii) that these variations may remain undetected without assessment of single molecules.


Asunto(s)
Trastornos Distónicos , Enfermedades Genéticas Ligadas al Cromosoma X , Enfermedades Neurodegenerativas , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Trastornos Distónicos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética
8.
Front Genet ; 13: 985975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36468036

RESUMEN

Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.

9.
Front Genet ; 13: 983668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226191

RESUMEN

Mosaicism-the existence of genetically distinct populations of cells in a particular organism-is an important cause of genetic disease. Mosaicism can appear as de novo DNA mutations, epigenetic alterations of DNA, and chromosomal abnormalities. Neurodevelopmental or neuropsychiatric diseases, including autism-often arise by de novo mutations that usually not present in either of the parents. De novo mutations might occur as early as in the parental germline, during embryonic, fetal development, and/or post-natally, through ageing and life. Mutation timing could lead to mutation burden of less than heterozygosity to approaching homozygosity. Developmental timing of somatic mutation attainment will affect the mutation load and distribution throughout the body. In this review, we discuss the timing of de novo mutations, spanning from mutations in the germ lineage (all ages), to post-zygotic, embryonic, fetal, and post-natal events, through aging to death. These factors can determine the tissue specific distribution and load of de novo mutations, which can affect disease. The disease threshold burden of somatic de novo mutations of a particular gene in any tissue will be important to define.

10.
Mol Psychiatry ; 27(9): 3692-3698, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35546631

RESUMEN

Tandem repeat expansions (TREs) can cause neurological diseases but their impact in schizophrenia is unclear. Here we analyzed genome sequences of adults with schizophrenia and found that they have a higher burden of TREs that are near exons and rare in the general population, compared with non-psychiatric controls. These TREs are disproportionately found at loci known to be associated with schizophrenia from genome-wide association studies, in individuals with clinically-relevant genetic variants at other schizophrenia loci, and in families where multiple individuals have schizophrenia. We showed that rare TREs in schizophrenia may impact synaptic functions by disrupting the splicing process of their associated genes in a loss-of-function manner. Our findings support the involvement of genome-wide rare TREs in the polygenic nature of schizophrenia.


Asunto(s)
Esquizofrenia , Adulto , Humanos , Esquizofrenia/genética , Esquizofrenia/epidemiología , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad/genética , Herencia Multifactorial/genética , Secuencias Repetidas en Tándem , Polimorfismo de Nucleótido Simple/genética
11.
Neurobiol Dis ; 163: 105604, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34968706

RESUMEN

Dentatorubral-pallidoluysian atrophy (DRPLA) is a devastating genetic disease presenting myoclonus, epilepsy, ataxia, and dementia. DRPLA is caused by the expansion of a CAG repeat in the ATN1 gene. Aggregation of the polyglutamine-expanded ATN1 protein causes neuro-degeneration of the dentatorubral and pallidoluysian systems. The expanded CAG repeats are unstable, and ongoing repeat expansions contribute to disease onset, progression, and severity. Inducing contractions of expanded repeats can be a means to treat DRPLA, for which no disease-modifying or curative therapies exist at present. Previously, we characterized a small molecule, naphthyridine-azaquinolone (NA), which binds to CAG slip-out structures and induces repeat contraction in Huntington's disease mice. Here, we demonstrate that long-term intracerebroventricular infusion of NA leads to repeat contraction, reductions in mutant ATN1 aggregation, and improved motor phenotype in a murine model of DRPLA. Furthermore, NA-induced contraction resulted in the modification of repeat-length-dependent dysregulation of gene expression profiles in DRPLA mice. Our study reveals the therapeutic potential of repeat contracting small molecules for repeat expansion disorders, such as DRPLA.


Asunto(s)
Destreza Motora/fisiología , Epilepsias Mioclónicas Progresivas/fisiopatología , Proteínas del Tejido Nervioso/genética , Repeticiones de Trinucleótidos , Animales , Modelos Animales de Enfermedad , Ratones , Destreza Motora/efectos de los fármacos , Epilepsias Mioclónicas Progresivas/genética , Naftiridinas/farmacología , Fenotipo , Agregado de Proteínas/efectos de los fármacos , Quinolonas/farmacología
12.
Genome Res ; 32(1): 1-27, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965938

RESUMEN

Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.


Asunto(s)
Genómica , Secuencias Repetidas en Tándem , Animales , Secuencia de Bases , Perros , Humanos , Análisis de Secuencia de ADN , Secuencias Repetidas en Tándem/genética
13.
Cell Rep ; 37(10): 110078, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879276

RESUMEN

Ongoing inchworm-like CAG and CGG repeat expansions in brains, arising by aberrant processing of slipped DNAs, may drive Huntington's disease, fragile X syndrome, and autism. FAN1 nuclease modifies hyper-expansion rates by unknown means. We show that FAN1, through iterative cycles, binds, dimerizes, and cleaves slipped DNAs, yielding striking exo-nuclease pauses along slip-outs: 5'-C↓A↓GC↓A↓G-3' and 5'-C↓T↓G↓C↓T↓G-3'. CAG excision is slower than CTG and requires intra-strand A·A and T·T mismatches. Fully paired hairpins arrested excision, whereas disease-delaying CAA interruptions further slowed excision. Endo-nucleolytic cleavage is insensitive to slip-outs. Rare FAN1 variants are found in individuals with autism with CGG/CCG expansions, and CGG/CCG slip-outs show exo-nuclease pauses. The slip-out-specific ligand, naphthyridine-azaquinolone, which induces contractions of expanded repeats in vivo, requires FAN1 for its effect, and protects slip-outs from FAN1 exo-, but not endo-, nucleolytic digestion. FAN1's inchworm pausing of slip-out excision rates is well suited to modify inchworm expansion rates, which modify disease onset and progression.


Asunto(s)
Trastorno del Espectro Autista/genética , Reparación de la Incompatibilidad de ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Enfermedad de Huntington/genética , Enzimas Multifuncionales/metabolismo , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido , Animales , Trastorno del Espectro Autista/enzimología , Línea Celular Tumoral , Progresión de la Enfermedad , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Predisposición Genética a la Enfermedad , Humanos , Enfermedad de Huntington/enzimología , Enzimas Multifuncionales/genética , Mutación , Conformación de Ácido Nucleico , Fenotipo , Unión Proteica , Células Sf9 , Ataxias Espinocerebelosas/enzimología
14.
PLoS Genet ; 17(11): e1009909, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780483

RESUMEN

The ATRX ATP-dependent chromatin remodelling/helicase protein associates with the DAXX histone chaperone to deposit histone H3.3 over repetitive DNA regions. Because ATRX-protein interactions impart functions, such as histone deposition, we used proximity-dependent biotinylation (BioID) to identify proximal associations for ATRX. The proteomic screen captured known interactors, such as DAXX, NBS1, and PML, but also identified a range of new associating proteins. To gauge the scope of their roles, we examined three novel ATRX-associating proteins that likely differed in function, and for which little data were available. We found CCDC71 to associate with ATRX, but also HP1 and NAP1, suggesting a role in chromatin maintenance. Contrastingly, FAM207A associated with proteins involved in ribosome biosynthesis and localized to the nucleolus. ATRX proximal associations with the SLF2 DNA damage response factor help inhibit telomere exchanges. We further screened for the proteomic changes at telomeres when ATRX, SLF2, or both proteins were deleted. The loss caused important changes in the abundance of chromatin remodelling, DNA replication, and DNA repair factors at telomeres. Interestingly, several of these have previously been implicated in alternative lengthening of telomeres. Altogether, this study expands the repertoire of ATRX-associating proteins and functions.


Asunto(s)
Proteínas Co-Represoras/genética , Proteínas de Unión al ADN/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Biotinilación/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Cromatina/genética , Homólogo de la Proteína Chromobox 5/genética , Daño del ADN/genética , Reparación del ADN/genética , Chaperonas de Histonas/genética , Histonas/genética , Humanos , Chaperonas Moleculares/genética , Proteína de la Leucemia Promielocítica/genética , Telómero/genética , ARNt Metiltransferasas
15.
Brain Commun ; 3(3): fcab207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34622207

RESUMEN

Epilepsies are a group of common neurological disorders with a substantial genetic basis. Despite this, the molecular diagnosis of epilepsies remains challenging due to its heterogeneity. Studies utilizing whole-genome sequencing may provide additional insights into genetic causes of epilepsies of unknown aetiology. Whole-genome sequencing was used to evaluate a cohort of adults with unexplained developmental and epileptic encephalopathies (n = 30), for whom prior genetic tests, including whole-exome sequencing in some cases, were negative or inconclusive. Rare single nucleotide variants, insertions/deletions, copy number variants and tandem repeat expansions were analysed. Seven pathogenic or likely pathogenic single nucleotide variants, and two pathogenic deleterious copy number variants were identified in nine patients (32.1% of the cohort). One of the copy number variants, identified in a patient with Lennox-Gastaut syndrome, was too small to be detected by chromosomal microarray techniques. We also identified two tandem repeat expansions with clinical implications in two other patients with Lennox-Gastaut syndrome: a CGG repeat expansion in the 5'untranslated region of DIP2B, and a CTG expansion in ATXN8OS (previously implicated in spinocerebellar ataxia type 8). Three patients had KCNA2 pathogenic variants. One of them died of sudden unexpected death in epilepsy. The other two patients had, in addition to a KCNA2 variant, a second de novo variant impacting potential epilepsy-relevant genes (KCNIP4 and UBR5). Overall, whole-genome sequencing provided a genetic explanation in 32.1% of the total cohort. This is also the first report of coding and non-coding tandem repeat expansions identified in patients with Lennox-Gastaut syndrome. This study demonstrates that using whole-genome sequencing, the examination of multiple types of rare genetic variation, including those found in the non-coding region of the genome, can help resolve unexplained epilepsies.

16.
Sci Adv ; 7(31)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34330701

RESUMEN

FAN1, a DNA structure-specific nuclease, interacts with MLH1, but the repair pathways in which this complex acts are unknown. FAN1 processes DNA interstrand crosslinks (ICLs) and FAN1 variants are modifiers of the neurodegenerative Huntington's disease (HD), presumably by regulating HD-causing CAG repeat expansions. Here, we identify specific amino acid residues in two adjacent FAN1 motifs that are critical for MLH1 binding. Disruption of the FAN1-MLH1 interaction confers cellular hypersensitivity to ICL damage and defective repair of CAG/CTG slip-outs, intermediates of repeat expansion mutations. FAN1-S126 phosphorylation, which hinders FAN1-MLH1 association, is cell cycle-regulated by cyclin-dependent kinase activity and attenuated upon ICL induction. Our data highlight the FAN1-MLH1 complex as a phosphorylation-regulated determinant of ICL response and repeat stability, opening novel paths to modify cancer and neurodegeneration.


Asunto(s)
Endodesoxirribonucleasas , Exodesoxirribonucleasas , ADN , Daño del ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Enzimas Multifuncionales/genética
18.
J Huntingtons Dis ; 10(1): 95-122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33579867

RESUMEN

FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.


Asunto(s)
Reparación del ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Genes Modificadores/genética , Inestabilidad Genómica/genética , Enfermedad de Huntington/genética , Enzimas Multifuncionales/genética , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Humanos
19.
Lancet Neurol ; 19(11): 930-939, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33098802

RESUMEN

BACKGROUND: Huntington's disease is a fatal neurodegenerative disorder that is caused by CAG-CAA repeat expansion, encoding polyglutamine, in the huntingtin (HTT) gene. Current age-of-clinical-onset prediction models for Huntington's disease are based on polyglutamine length and explain only a proportion of the variability in age of onset observed between patients. These length-based assays do not interrogate the underlying genetic variation, because known genetic variants in this region do not alter the protein coding sequence. Given that individuals with identical repeat lengths can present with Huntington's disease decades apart, the search for genetic modifiers of clinical age of onset has become an active area of research. RECENT DEVELOPMENTS: Results from three independent genetic studies of Huntington's disease have shown that glutamine-encoding CAA variants that interrupt DNA CAG repeat tracts, but do not alter polyglutamine length or polyglutamine homogeneity, are associated with substantial differences in age of onset of Huntington's disease in carriers. A variant that results in the loss of CAA interruption is associated with early onset and is particularly relevant to individuals that carry alleles in the reduced penetrance range (ie, CAG 36-39). Approximately a third of clinically manifesting carriers of reduced penetrance alleles, defined by current diagnostics, carry this variant. Somatic repeat instability, modified by interrupted CAG tracts, is the most probable cause mediating this effect. This relationship is supported by genome-wide screens for disease modifiers, which have revealed the importance of DNA-repair genes in Huntington's disease (ie, FAN1, LIG1, MLH1, MSH3, PMS1, and PMS2). WHERE NEXT?: Focus needs to be placed on refining our understanding of the effect of the loss-of-interruption and duplication-of-interruption variants and other interrupting sequence variants on age of onset, and assessing their effect in disease-relevant brain tissues, as well as in diverse population groups, such as individuals from Africa and Asia. Diagnostic tests should be augmented or updated, since current tests do not assess the underlying DNA sequence variation, especially when assessing individuals that carry alleles in the reduced penetrance range. Future studies should explore somatic repeat instability and DNA repair as new therapeutic targets to modify age of onset in Huntington's disease and in other repeat-mediated disorders. Disease-modifying therapies could potentially be developed by therapeutically targeting these processes. Promising approaches include therapeutically targeting the expanded repeat or directly perturbing key DNA-repair genes (eg, with antisense oligonucleotides or small molecules). Targeting the CAG repeat directly with naphthyridine-azaquinolone, a compound that induces contractions, and altering the expression of MSH3, represent two viable therapeutic strategies. However, as a first step, the capability of such novel therapeutic approaches to delay clinical onset in animal models should be assessed.


Asunto(s)
Terapia Genética/tendencias , Variación Genética/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/epidemiología , Enfermedad de Huntington/genética , Edad de Inicio , Animales , Terapia Genética/métodos , Humanos , Enfermedad de Huntington/terapia
20.
Nature ; 586(7827): 80-86, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32717741

RESUMEN

Tandem DNA repeats vary in the size and sequence of each unit (motif). When expanded, these tandem DNA repeats have been associated with more than 40 monogenic disorders1. Their involvement in disorders with complex genetics is largely unknown, as is the extent of their heterogeneity. Here we investigated the genome-wide characteristics of tandem repeats that had motifs with a length of 2-20 base pairs in 17,231 genomes of families containing individuals with autism spectrum disorder (ASD)2,3 and population control individuals4. We found extensive polymorphism in the size and sequence of motifs. Many of the tandem repeat loci that we detected correlated with cytogenetic fragile sites. At 2,588 loci, gene-associated expansions of tandem repeats that were rare among population control individuals were significantly more prevalent among individuals with ASD than their siblings without ASD, particularly in exons and near splice junctions, and in genes related to the development of the nervous system and cardiovascular system or muscle. Rare tandem repeat expansions had a prevalence of 23.3% in children with ASD compared with 20.7% in children without ASD, which suggests that tandem repeat expansions make a collective contribution to the risk of ASD of 2.6%. These rare tandem repeat expansions included previously undescribed ASD-linked expansions in DMPK and FXN, which are associated with neuromuscular conditions, and in previously unknown loci such as FGF14 and CACNB1. Rare tandem repeat expansions were associated with lower IQ and adaptive ability. Our results show that tandem DNA repeat expansions contribute strongly to the genetic aetiology and phenotypic complexity of ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Expansión de las Repeticiones de ADN/genética , Genoma Humano/genética , Genómica , Secuencias Repetidas en Tándem/genética , Femenino , Factores de Crecimiento de Fibroblastos/genética , Predisposición Genética a la Enfermedad , Humanos , Inteligencia/genética , Proteínas de Unión a Hierro/genética , Masculino , Proteína Quinasa de Distrofia Miotónica/genética , Motivos de Nucleótidos , Polimorfismo Genético , Frataxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA