Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther Oncol ; 32(1): 200771, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596309

RESUMEN

The high rates of protein synthesis and processing render multiple myeloma (MM) cells vulnerable to perturbations in protein homeostasis. The induction of proteotoxic stress by targeting protein degradation with proteasome inhibitors (PIs) has revolutionized the treatment of MM. However, resistance to PIs is inevitable and represents an ongoing clinical challenge. Our first-in-human study of the selective inhibitor of RNA polymerase I transcription of ribosomal RNA genes, CX-5461, has demonstrated a potential signal for anti-tumor activity in three of six heavily pre-treated MM patients. Here, we show that CX-5461 has potent anti-myeloma activity in PI-resistant MM preclinical models in vitro and in vivo. In addition to inhibiting ribosome biogenesis, CX-5461 causes topoisomerase II trapping and replication-dependent DNA damage, leading to G2/M cell-cycle arrest and apoptotic cell death. Combining CX-5461 with PI does not further enhance the anti-myeloma activity of CX-5461 in vivo. In contrast, CX-5461 shows synergistic interaction with the histone deacetylase inhibitor panobinostat in both the Vk∗MYC and the 5T33-KaLwRij mouse models of MM by targeting ribosome biogenesis and protein synthesis through distinct mechanisms. Our findings thus provide strong evidence to facilitate the clinical development of targeting the ribosome to treat relapsed and refractory MM.

2.
Sci Adv ; 10(10): eadj8803, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457494

RESUMEN

Philadelphia chromosome-positive B cell acute lymphoblastic leukemia (B-ALL), characterized by the BCR::ABL1 fusion gene, remains a poor prognosis cancer needing new therapeutic approaches. Transcriptomic profiling identified up-regulation of oncogenic transcription factors ERG and c-MYC in BCR::ABL1 B-ALL with ERG and c-MYC required for BCR::ABL1 B-ALL in murine and human models. Profiling of ERG- and c-MYC-dependent gene expression and analysis of ChIP-seq data established ERG and c-MYC coordinate a regulatory network in BCR::ABL1 B-ALL that controls expression of genes involved in several biological processes. Prominent was control of ribosome biogenesis, including expression of RNA polymerase I (POL I) subunits, the importance of which was validated by inhibition of BCR::ABL1 cells by POL I inhibitors, including CX-5461, that prevents promoter recruitment and transcription initiation by POL I. Our results reveal an essential ERG- and c-MYC-dependent transcriptional network involved in regulation of metabolic and ribosome biogenesis pathways in BCR::ABL1 B-ALL, from which previously unidentified vulnerabilities and therapeutic targets may emerge.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Regulador Transcripcional ERG , Animales , Humanos , Ratones , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Proteínas de Fusión bcr-abl/uso terapéutico , Redes Reguladoras de Genes , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Factores de Transcripción/genética , Regulador Transcripcional ERG/genética
3.
Nat Commun ; 14(1): 2697, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188662

RESUMEN

Spatial proteomics technologies have revealed an underappreciated link between the location of cells in tissue microenvironments and the underlying biology and clinical features, but there is significant lag in the development of downstream analysis methods and benchmarking tools. Here we present SPIAT (spatial image analysis of tissues), a spatial-platform agnostic toolkit with a suite of spatial analysis algorithms, and spaSim (spatial simulator), a simulator of tissue spatial data. SPIAT includes multiple colocalization, neighborhood and spatial heterogeneity metrics to characterize the spatial patterns of cells. Ten spatial metrics of SPIAT are benchmarked using simulated data generated with spaSim. We show how SPIAT can uncover cancer immune subtypes correlated with prognosis in cancer and characterize cell dysfunction in diabetes. Our results suggest SPIAT and spaSim as useful tools for quantifying spatial patterns, identifying and validating correlates of clinical outcomes and supporting method development.


Asunto(s)
Neoplasias , Humanos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Proteómica , Microambiente Tumoral
4.
Cell Rep ; 41(5): 111571, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323262

RESUMEN

The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood. Using genome-wide loss-of-function screens, we demonstrate the ribosome biogenesis axis as the most potent class of genes whose disruption stabilizes p53. Mechanistically, we identify genes critical for regulation of this pathway, including HEATR3. By selectively disabling the nucleolar surveillance pathway, we demonstrate that it is essential for the ability of all nuclear-acting stresses, including DNA damage, to induce p53 accumulation. Our data support a paradigm whereby the nucleolar surveillance pathway is the central integrator of stresses that regulate nuclear p53 abundance, ensuring that ribosome biogenesis is hardwired to cellular proliferative capacity.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal/genética , Nucléolo Celular/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
5.
Elife ; 112022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758651

RESUMEN

Hyperactivation of oncogenic pathways downstream of RAS and PI3K/AKT in normal cells induces a senescence-like phenotype that acts as a tumor-suppressive mechanism that must be overcome during transformation. We previously demonstrated that AKT-induced senescence (AIS) is associated with profound transcriptional and metabolic changes. Here, we demonstrate that human fibroblasts undergoing AIS display upregulated cystathionine-ß-synthase (CBS) expression and enhanced uptake of exogenous cysteine, which lead to increased hydrogen sulfide (H2S) and glutathione (GSH) production, consequently protecting senescent cells from oxidative stress-induced cell death. CBS depletion allows AIS cells to escape senescence and re-enter the cell cycle, indicating the importance of CBS activity in maintaining AIS. Mechanistically, we show this restoration of proliferation is mediated through suppressing mitochondrial respiration and reactive oxygen species (ROS) production by reducing mitochondrial localized CBS while retaining antioxidant capacity of transsulfuration pathway. These findings implicate a potential tumor-suppressive role for CBS in cells with aberrant PI3K/AKT pathway activation. Consistent with this concept, in human gastric cancer cells with activated PI3K/AKT signaling, we demonstrate that CBS expression is suppressed due to promoter hypermethylation. CBS loss cooperates with activated PI3K/AKT signaling in promoting anchorage-independent growth of gastric epithelial cells, while CBS restoration suppresses the growth of gastric tumors in vivo. Taken together, we find that CBS is a novel regulator of AIS and a potential tumor suppressor in PI3K/AKT-driven gastric cancers, providing a new exploitable metabolic vulnerability in these cancers.


Asunto(s)
Sulfuro de Hidrógeno , Neoplasias Gástricas , Cistationina , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Glutatión/metabolismo , Glucógeno Sintasa , Humanos , Sulfuro de Hidrógeno/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias Gástricas/genética
6.
Nat Commun ; 13(1): 1100, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232962

RESUMEN

Despite the success of therapies targeting oncogenes in cancer, clinical outcomes are limited by residual disease that ultimately results in relapse. This residual disease is often characterized by non-genetic adaptive resistance, that in melanoma is characterised by altered metabolism. Here, we examine how targeted therapy reprograms metabolism in BRAF-mutant melanoma cells using a genome-wide RNA interference (RNAi) screen and global gene expression profiling. Using this systematic approach we demonstrate post-transcriptional regulation of metabolism following BRAF inhibition, involving selective mRNA transport and translation. As proof of concept we demonstrate the RNA processing kinase U2AF homology motif kinase 1 (UHMK1) associates with mRNAs encoding metabolism proteins and selectively controls their transport and translation during adaptation to BRAF-targeted therapy. UHMK1 inactivation induces cell death by disrupting therapy induced metabolic reprogramming, and importantly, delays resistance to BRAF and MEK combination therapy in multiple in vivo models. We propose selective mRNA processing and translation by UHMK1 constitutes a mechanism of non-genetic resistance to targeted therapy in melanoma by controlling metabolic plasticity induced by therapy.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Terapia Molecular Dirigida , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/metabolismo , ARN Mensajero/uso terapéutico
7.
Nat Cell Biol ; 23(11): 1136-1147, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34750583

RESUMEN

The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.


Asunto(s)
Proliferación Celular , ARN Helicasas DEAD-box/metabolismo , Células Endoteliales/enzimología , Linfangiogénesis , Vasos Linfáticos/enzimología , ARN Ribosómico/biosíntesis , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Puntos de Control del Ciclo Celular , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , ARN Helicasas DEAD-box/genética , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Vasos Linfáticos/embriología , ARN Ribosómico/genética , Ribosomas/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
8.
Signal Transduct Target Ther ; 6(1): 323, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462428

RESUMEN

Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Terapia Molecular Dirigida , Neoplasias/genética , Proteínas Ribosómicas/genética , Puntos de Control del Ciclo Celular/genética , Proliferación Celular/genética , Enfermedades Genéticas Congénitas/terapia , Humanos , Mutación/genética , Neoplasias/terapia , Proteínas Ribosómicas/uso terapéutico , Ribosomas/genética
9.
Mol Cancer Ther ; 20(11): 2140-2150, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34413130

RESUMEN

Monotherapy with PARP inhibitors is effective for the subset of castrate-resistant prostate cancer (CRPC) with defects in homologous recombination (HR) DNA repair. New treatments are required for the remaining tumors, and an emerging strategy is to combine PARP inhibitors with other therapies that induce DNA damage. Here we tested whether PARP inhibitors are effective for HR-proficient CRPC, including androgen receptor (AR)-null tumors, when used in combination with CX-5461, a small molecule that inhibits RNA polymerase I transcription and activates the DNA damage response, and has antitumor activity in early phase I trials. The combination of CX-5461 and talazoparib significantly decreased in vivo growth of patient-derived xenografts of HR-proficient CRPC, including AR-positive, AR-null, and neuroendocrine tumors. CX-5461 and talazoparib synergistically inhibited the growth of organoids and cell lines, and significantly increased the levels of DNA damage. Decreased tumor growth after combination therapy was maintained for 2 weeks without treatment, significantly increasing host survival. Therefore, combination treatment with CX-5461 and talazoparib is effective for HR-proficient tumors that are not suitable for monotherapy with PARP inhibitors, including AR-null CRPC. This expands the spectrum of CRPC that is sensitive to PARP inhibition.


Asunto(s)
Benzotiazoles/uso terapéutico , Daño del ADN/genética , Naftiridinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Benzotiazoles/farmacología , Humanos , Masculino , Ratones , Naftiridinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
10.
Blood ; 137(24): 3351-3364, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33512431

RESUMEN

MYC-driven B-cell lymphomas are addicted to increased levels of ribosome biogenesis (RiBi), offering the potential for therapeutic intervention. However, it is unclear whether inhibition of RiBi suppresses lymphomagenesis by decreasing translational capacity and/or by p53 activation mediated by the impaired RiBi checkpoint (IRBC). Here we generated Eµ-Myc lymphoma cells expressing inducible short hairpin RNAs to either ribosomal protein L7a (RPL7a) or RPL11, the latter an essential component of the IRBC. The loss of either protein reduced RiBi, protein synthesis, and cell proliferation to similar extents. However, only RPL7a depletion induced p53-mediated apoptosis through the selective proteasomal degradation of antiapoptotic MCL-1, indicating the critical role of the IRBC in this mechanism. Strikingly, low concentrations of the US Food and Drug Administration-approved anticancer RNA polymerase I inhibitor Actinomycin D (ActD) dramatically prolonged the survival of mice harboring Trp53+/+;Eµ-Myc but not Trp53-/-;Eµ-Myc lymphomas, which provides a rationale for treating MYC-driven B-cell lymphomas with ActD. Importantly, the molecular effects of ActD on Eµ-Myc cells were recapitulated in human B-cell lymphoma cell lines, highlighting the potential for ActD as a therapeutic avenue for p53 wild-type lymphoma.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Dactinomicina/farmacología , Linfoma de Células B , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc , Ribosomas , Proteína p53 Supresora de Tumor , Animales , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Masculino , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
Br J Cancer ; 124(3): 616-627, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33173151

RESUMEN

BACKGROUND: Intrinsic and acquired drug resistance represent fundamental barriers to the cure of high-grade serous ovarian carcinoma (HGSC), the most common histological subtype accounting for the majority of ovarian cancer deaths. Defects in homologous recombination (HR) DNA repair are key determinants of sensitivity to chemotherapy and poly-ADP ribose polymerase inhibitors. Restoration of HR is a common mechanism of acquired resistance that results in patient mortality, highlighting the need to identify new therapies targeting HR-proficient disease. We have shown promise for CX-5461, a cancer therapeutic in early phase clinical trials, in treating HR-deficient HGSC. METHODS: Herein, we screen the whole protein-coding genome to identify potential targets whose depletion cooperates with CX-5461 in HR-proficient HGSC. RESULTS: We demonstrate robust proliferation inhibition in cells depleted of DNA topoisomerase 1 (TOP1). Combining the clinically used TOP1 inhibitor topotecan with CX-5461 potentiates a G2/M cell cycle checkpoint arrest in multiple HR-proficient HGSC cell lines. The combination enhances a nucleolar DNA damage response and global replication stress without increasing DNA strand breakage, significantly reducing clonogenic survival and tumour growth in vivo. CONCLUSIONS: Our findings highlight the possibility of exploiting TOP1 inhibition to be combined with CX-5461 as a non-genotoxic approach in targeting HR-proficient HGSC.


Asunto(s)
Benzotiazoles/farmacología , Cistadenocarcinoma Seroso/tratamiento farmacológico , Daño del ADN/efectos de los fármacos , Recombinación Homóloga , Naftiridinas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , ARN Polimerasa I/antagonistas & inhibidores , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Replicación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Genes BRCA2 , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Ratones , Ratones Endogámicos NOD , Ratones SCID , Clasificación del Tumor , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Interferencia de ARN , ARN Polimerasa I/genética
12.
Mol Cell Oncol ; 7(6): 1805256, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-33235908

RESUMEN

Acquired drug resistance leads to poor clinical outcome in high grade serous ovarian cancer (HGSOC). We have demonstrated the efficacy of the novel drug CX-5461 in HGSOC is mediated through destabilization of DNA replication forks. The data highlights the potential of CX-5461 in overcoming a general mechanism of chemotherapeutic resistance.

13.
EMBO J ; 39(21): e105111, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32945574

RESUMEN

Elevated ribosome biogenesis in oncogene-driven cancers is commonly targeted by DNA-damaging cytotoxic drugs. Our previous first-in-human trial of CX-5461, a novel, less genotoxic agent that specifically inhibits ribosome biogenesis via suppression of RNA polymerase I (Pol I) transcription, revealed single-agent efficacy in refractory blood cancers. Despite this clinical response, patients were not cured. In parallel, we demonstrated a marked improvement in the in vivo efficacy of CX-5461 in combination with PI3K/AKT/mTORC1 pathway inhibitors. Here, we reveal the molecular basis for this improved efficacy observed in vivo, which is associated with specific suppression of translation of mRNAs encoding regulators of cellular metabolism. Importantly, acquired resistance to this cotreatment is driven by translational rewiring that results in dysregulated cellular metabolism and induction of a cAMP-dependent pathway critical for the survival of blood cancers including lymphoma and acute myeloid leukemia. Our studies thus identify key molecular mechanisms underpinning the response of blood cancers to selective inhibition of ribosome biogenesis and define metabolic vulnerabilities that will facilitate the rational design of more effective regimens for Pol I-directed therapies.


Asunto(s)
Neoplasias/metabolismo , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Transcripción Genética/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Benzotiazoles/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Naftiridinas/farmacología , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de Proteínas Quinasas , ARN Polimerasa I/metabolismo , ARN Mensajero/metabolismo , ARN Ribosómico , Ribosomas/efectos de los fármacos , Transcriptoma
14.
Cancer Res ; 80(17): 3706-3718, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32651259

RESUMEN

The ability of the N-MYC transcription factor to drive cancer progression is well demonstrated in neuroblastoma, the most common extracranial pediatric solid tumor, where MYCN amplification heralds a poor prognosis, with only 11% of high-risk patients surviving past 5 years. However, decades of attempts of direct inhibition of N-MYC or its paralogues has led to the conclusion that this protein is "undruggable." Therefore, targeting pathways upregulated by N-MYC signaling presents an alternative therapeutic approach. Here, we show that MYCN-amplified neuroblastomas are characterized by elevated rates of protein synthesis and that high expression of ABCE1, a translation factor directly upregulated by N-MYC, is itself a strong predictor of poor clinical outcome. Despite the potent ability of N-MYC in heightening protein synthesis and malignant characteristics in cancer cells, suppression of ABCE1 alone selectively negated this effect, returning the rate of translation to baseline levels and significantly reducing the growth, motility, and invasiveness of MYCN-amplified neuroblastoma cells and patient-derived xenograft tumors in vivo. The growth of nonmalignant cells or MYCN-nonamplified neuroblastoma cells remained unaffected by reduced ABCE1, supporting a therapeutic window associated with targeting ABCE1. Neuroblastoma cells with c-MYC overexpression also required ABCE1 to maintain cell proliferation and translation. Taken together, ABCE1-mediated translation constitutes a critical process in the progression of N-MYC-driven and c-MYC-driven cancers that warrants investigations into methods of its therapeutic inhibition. SIGNIFICANCE: These findings demonstrate that N-MYC-driven cancers are reliant on elevated rates of protein synthesis driven by heightened expression of ABCE1, a vulnerability that can be exploited through suppression of ABCE1.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/patología , Transportadoras de Casetes de Unión a ATP/genética , Animales , Progresión de la Enfermedad , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Proteína Proto-Oncogénica N-Myc/metabolismo , Biosíntesis de Proteínas , ARN Mensajero
15.
Front Cell Dev Biol ; 8: 568, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719798

RESUMEN

Hyperactivation of RNA polymerase I (Pol I) transcription of ribosomal RNA (rRNA) genes (rDNA) is a key determinant of growth and proliferation and a consistent feature of cancer cells. We have demonstrated that inhibition of rDNA transcription by the Pol I transcription inhibitor CX-5461 selectively kills tumor cells in vivo. Moreover, the first-in human trial of CX-5461 has demonstrated CX-5461 is well-tolerated in patients and has single-agent anti-tumor activity in hematologic malignancies. However, the mechanisms underlying tumor cell sensitivity to CX-5461 remain unclear. Understanding these mechanisms is crucial for the development of predictive biomarkers of response that can be utilized for stratifying patients who may benefit from CX-5461. The rDNA repeats exist in four different and dynamic chromatin states: inactive rDNA can be either methylated silent or unmethylated pseudo-silent; while active rDNA repeats are described as either transcriptionally competent but non-transcribed or actively transcribed, depending on the level of rDNA promoter methylation, loading of the essential rDNA chromatin remodeler UBF and histone marks status. In addition, the number of rDNA repeats per human cell can reach hundreds of copies. Here, we tested the hypothesis that the number and/or chromatin status of the rDNA repeats, is a critical determinant of tumor cell sensitivity to Pol I therapy. We systematically examined a panel of ovarian cancer (OVCA) cell lines to identify rDNA chromatin associated biomarkers that might predict sensitivity to CX-5461. We demonstrated that an increased proportion of active to inactive rDNA repeats, independent of rDNA copy number, determines OVCA cell line sensitivity to CX-5461. Further, using zinc finger nuclease genome editing we identified that reducing rDNA copy number leads to an increase in the proportion of active rDNA repeats and confers sensitivity to CX-5461 but also induces genome-wide instability and sensitivity to DNA damage. We propose that the proportion of active to inactive rDNA repeats may serve as a biomarker to identify cancer patients who will benefit from CX-5461 therapy in future clinical trials. The data also reinforces the notion that rDNA instability is a threat to genomic integrity and cellular homeostasis.

16.
Nat Commun ; 11(1): 2641, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457376

RESUMEN

Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 co-operates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 exhibits in vivo single agent efficacy in a HGSOC-PDX with reduced sensitivity to PARPi by overcoming replication fork protection. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. We propose CX-5461 is a promising therapy in combination with PARPi in HR-deficient HGSOC and also as a single agent for the treatment of relapsed disease.


Asunto(s)
Benzotiazoles/farmacología , Cistadenocarcinoma Seroso/tratamiento farmacológico , Daño del ADN , Naftiridinas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Replicación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Femenino , Xenoinjertos , Recombinación Homóloga , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Modelos Biológicos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , ARN Polimerasa I/antagonistas & inhibidores , Transcriptoma
17.
Mech Ageing Dev ; 187: 111229, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32171687

RESUMEN

Oncogene-induced senescence (OIS) is a powerful intrinsic tumor-suppressive mechanism, arresting cell cycle progression upon oncogene-activating genomic alterations. The discovery and characterization of the senescence-associated secretome unveiled a rich additional complexity to the senescence phenotype, including extrinsic impacts on the microenvironment and engagement of the immune response. Emerging evidence suggests that senescence phenotypes vary depending on the oncogenic stimulus. Therefore, understanding the mechanisms underlying OIS and how they are subverted in cancer will provide invaluable opportunities to identify alternative strategies for treating oncogene-driven cancers. In this review, we primarily discuss the key mechanisms governing OIS driven by the RAS/MAPK and PI3K/AKT pathways and how understanding the biology of senescent cells has uncovered new therapeutic possibilities to target cancer.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Neoplasias/metabolismo , Oncogenes , Transducción de Señal , Microambiente Tumoral , Envejecimiento/genética , Envejecimiento/patología , Animales , Humanos , Neoplasias/genética , Neoplasias/patología
18.
Cell Death Differ ; 27(2): 725-741, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31285545

RESUMEN

Exquisite regulation of PI3K/AKT/mTORC1 signaling is essential for homeostatic control of cell growth, proliferation, and survival. Aberrant activation of this signaling network is an early driver of many sporadic human cancers. Paradoxically, sustained hyperactivation of the PI3K/AKT/mTORC1 pathway in nontransformed cells results in cellular senescence, which is a tumor-suppressive mechanism that must be overcome to promote malignant transformation. While oncogene-induced senescence (OIS) driven by excessive RAS/ERK signaling has been well studied, little is known about the mechanisms underpinning the AKT-induced senescence (AIS) response. Here, we utilize a combination of transcriptome and metabolic profiling to identify key signatures required to maintain AIS. We also employ a whole protein-coding genome RNAi screen for AIS escape, validating a subset of novel mediators and demonstrating their preferential specificity for AIS as compared with OIS. As proof of concept of the potential to exploit the AIS network, we show that neurofibromin 1 (NF1) is upregulated during AIS and its ability to suppress RAS/ERK signaling facilitates AIS maintenance. Furthermore, depletion of NF1 enhances transformation of p53-mutant epithelial cells expressing activated AKT, while its overexpression blocks transformation by inducing a senescent-like phenotype. Together, our findings reveal novel mechanistic insights into the control of AIS and identify putative senescence regulators that can potentially be targeted, with implications for new therapeutic options to treat PI3K/AKT/mTORC1-driven cancers.


Asunto(s)
Senescencia Celular/genética , Proteínas Proto-Oncogénicas c-akt/genética , Línea Celular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Transducción de Señal/genética
19.
Proc Natl Acad Sci U S A ; 116(39): 19635-19645, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31488714

RESUMEN

Substance P (SP) regulates multiple biological processes through its high-affinity neurokinin-1 receptor (NK-1R). While the SP/NK-1R signaling axis is involved in the pathogenesis of solid cancer, the role of this signaling pathway in hematological malignancy remains unknown. Here, we demonstrate that NK-1R expression is markedly elevated in the white blood cells from acute myeloid leukemia patients and a panel of human leukemia cell lines. Blocking NK-1R induces apoptosis in vitro and in vivo via increase of mitochondrial reactive oxygen species. This oxidative stress was triggered by rapid calcium flux from the endoplasmic reticulum into mitochondria and, consequently, impairment of mitochondrial function, a mechanism underlying the cytotoxicity of NK-1R antagonists. Besides anticancer activity, blocking NK-1R produces a potent antinociceptive effect in myeloid leukemia-induced bone pain by alleviating inflammation and inducing apoptosis. These findings thus raise the exciting possibility that the NK-1R antagonists, drugs currently used in the clinic for preventing chemotherapy-induced nausea and vomiting, may provide a therapeutic option for treating human myeloid leukemia.


Asunto(s)
Leucemia Mieloide Aguda/terapia , Mitocondrias/efectos de los fármacos , Receptores de Neuroquinina-1/metabolismo , Sustancia P/farmacología , Adulto , Anciano , Animales , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Inflamación/metabolismo , Leucemia/terapia , Masculino , Ratones , Ratones Endogámicos ICR , Persona de Mediana Edad , Mitocondrias/metabolismo , Antagonistas del Receptor de Neuroquinina-1/farmacología , Estrés Oxidativo , Transducción de Señal/efectos de los fármacos , Sustancia P/metabolismo
20.
Proc Natl Acad Sci U S A ; 116(36): 17990-18000, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31439820

RESUMEN

Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are an established treatment in estrogen receptor-positive breast cancer and are currently in clinical development in melanoma, a tumor that exhibits high rates of CDK4 activation. We analyzed melanoma cells with acquired resistance to the CDK4/6 inhibitor palbociclib and demonstrate that the activity of PRMT5, a protein arginine methyltransferase and indirect target of CDK4, is essential for CDK4/6 inhibitor sensitivity. By indirectly suppressing PRMT5 activity, palbociclib alters the pre-mRNA splicing of MDM4, a negative regulator of p53, leading to decreased MDM4 protein expression and subsequent p53 activation. In turn, p53 induces p21, leading to inhibition of CDK2, the main kinase substituting for CDK4/6 and a key driver of resistance to palbociclib. Loss of the ability of palbociclib to regulate the PRMT5-MDM4 axis leads to resistance. Importantly, combining palbociclib with the PRMT5 inhibitor GSK3326595 enhances the efficacy of palbociclib in treating naive and resistant models and also delays the emergence of resistance. Our studies have uncovered a mechanism of action of CDK4/6 inhibitors in regulating the MDM4 oncogene and the tumor suppressor, p53. Furthermore, we have established that palbociclib inhibition of the PRMT5-MDM4 axis is essential for robust melanoma cell sensitivity and provide preclinical evidence that coinhibition of CDK4/6 and PRMT5 is an effective and well-tolerated therapeutic strategy. Overall, our data provide a strong rationale for further investigation of novel combinations of CDK4/6 and PRMT5 inhibitors, not only in melanoma but other tumor types, including breast, pancreatic, and esophageal carcinoma.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Melanoma/metabolismo , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Piridinas/farmacología , Proteínas de Ciclo Celular/genética , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Resistencia a Antineoplásicos , Células HEK293 , Humanos , Células MCF-7 , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Proto-Oncogénicas/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...