Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35743044

RESUMEN

The human genetic variant BDNF (V66M) represents the first example of neurotrophin family member that has been linked to psychiatric disorders. In order to elucidate structural differences that account for the effects in cognitive function, this hproBDNF polymorph was expressed, refolded, purified, and compared directly to the WT variant for the first time for differences in their 3D structures by DSF, limited proteolysis, FT-IR, and SAXS measurements in solution. Our complementary studies revealed a deep impact of V66M polymorphism on hproBDNF conformations in solution. Although the mean conformation in solution appears to be more compact in the V66M variant, overall, we demonstrated a large increase in flexibility in solution upon V66M mutation. Thus, considering that plasticity in IDR is crucial for protein function, the observed alterations may be related to the functional alterations in hproBDNF binding to its receptors p75NTR, sortilin, HAP1, and SorCS2. These effects can provoke altered intracellular neuronal trafficking and/or affect proBDNF physiological functions, leading to many brain-associated diseases and conditions such as cognitive impairment and anxiety. The structural alterations highlighted in the present study may pave the way to the development of drug discovery strategies to provide greater therapeutic responses and of novel pharmacologic strategy in human populations with this common polymorphism, ultimately guiding personalized medicine for neuropsychiatric disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Trastornos Mentales , Precursores de Proteínas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Humanos , Trastornos Mentales/genética , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Dispersión del Ángulo Pequeño , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
2.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119015, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33741433

RESUMEN

An essential requirement for cells to sustain a high proliferating rate is to be paired with enhanced protein synthesis through the production of ribosomes. For this reason, part of the growth-factor signaling pathways, are devoted to activate ribosome biogenesis. Enhanced production of ribosomes is a hallmark in cancer cells, which is boosted by different mechanisms. Here we report that the nucleolar tumor-protein MageB2, whose expression is associated with cell proliferation, also participates in ribosome biogenesis. Studies carried out in both siRNA-mediated MageB2 silenced cells and CRISPR/CAS9-mediated MageB2 knockout (KO) cells showed that its expression is linked to rRNA transcription increase independently of the cell proliferation status. Mechanistically, MageB2 interacts with phospho-UBF, a protein which causes the recruitment of RNA Pol I pre-initiation complex required for rRNA transcription. In addition, cells expressing MageB2 displays enhanced phospho-UBF occupancy at the rDNA gene promoter. Proteomic studies performed in MageB2 KO cells revealed impairment in ribosomal protein (RPs) content. Functionally, enhancement in rRNA production in MageB2 expressing cells, was directly associated with an increased dynamic in protein synthesis. Altogether our results unveil a novel function for a tumor-expressed protein from the MAGE-I family. Findings reported here suggest that nucleolar MageB2 might play a role in enhancing ribosome biogenesis as part of its repertoire to support cancer cell proliferation.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/metabolismo , Ribosomas/metabolismo , Antígenos de Neoplasias/fisiología , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Proliferación Celular/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Células HCT116 , Células HEK293 , Humanos , Proteínas de Neoplasias/fisiología , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteómica , ARN Polimerasa I/metabolismo , ARN Ribosómico/biosíntesis , Ribosomas/genética , Transcripción Genética/genética
3.
Oncotarget ; 8(40): 67422-67438, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28978043

RESUMEN

GTSE1 over-expression has been reported as a potential marker for metastasis in various types of malignancies, including breast cancer. Despite this, the transcriptional regulation of this protein and the causes of its misregulation in tumors remain largely unknown. The aims of this work were to elucidate how GTSE1 is regulated at the transcriptional level and to clarify the mechanism underlying GTSE1-dependent cell functions in triple-negative breast cancer (TNBC). Here, we identified GTSE1 as a novel target gene of the TEAD4 transcription factor, highlighting a role for the YAP and TAZ coactivators in the transcriptional regulation of GTSE1. Moreover, we found that TEAD4 controls the formation of cell protrusions required for cell migration through GTSE1, unveiling a relevant effector role for this protein in the TEAD-dependent cellular functions and confirming TEAD4 role in promoting invasion and metastasis in breast cancer. Finally, we highlighted a role for the pRb-E2F1 pathway in the control of GTSE1 transcription and observed that treatment with drugs targeting the pRb-E2F1 or YAP/TAZ-TEAD pathways dramatically downregulated the expression levels of GTSE1 and of other genes involved in the formation of metastasis, suggesting their potential use in the treatment of TNBC.

4.
Cancer Lett ; 325(1): 11-7, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22664239

RESUMEN

Since its discovery in 1991, the knowledge about the tumor specific melanoma antigen gene (MAGE-I) family has been continuously increasing. Initially, MAGE-I proteins were considered as selective targets for immunotherapy. More recently, emerging data obtained from different cellular mechanisms controlled by MAGE-I proteins suggest a key role in the regulation of important pathways linked to cell proliferation. This is in part due to the ability of some MAGE-I proteins to control the p53 tumor suppressor. In this review, we focus on the mechanisms proposed to explain how MAGE-I proteins affect p53 functions.


Asunto(s)
Antígenos Específicos del Melanoma/genética , Antígenos Específicos del Melanoma/metabolismo , Melanoma/genética , Melanoma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Procesos de Crecimiento Celular/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...