Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
MMWR Morb Mortal Wkly Rep ; 73(18): 411-416, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722798

RESUMEN

During July-September 2023, an outbreak of Shiga toxin-producing Escherichia coli O157:H7 illness among children in city A, Utah, caused 13 confirmed illnesses; seven patients were hospitalized, including two with hemolytic uremic syndrome. Local, state, and federal public health partners investigating the outbreak linked the illnesses to untreated, pressurized, municipal irrigation water (UPMIW) exposure in city A; 12 of 13 ill children reported playing in or drinking UPMIW. Clinical isolates were genetically highly related to one another and to environmental isolates from multiple locations within city A's UPMIW system. Microbial source tracking, a method to indicate possible contamination sources, identified birds and ruminants as potential sources of fecal contamination of UPMIW. Public health and city A officials issued multiple press releases regarding the outbreak reminding residents that UPMIW is not intended for drinking or recreation. Public education and UPMIW management and operations interventions, including assessing and mitigating potential contamination sources, covering UPMIW sources and reservoirs, indicating UPMIW lines and spigots with a designated color, and providing conspicuous signage to communicate risk and intended use might help prevent future UPMIW-associated illnesses.


Asunto(s)
Brotes de Enfermedades , Infecciones por Escherichia coli , Escherichia coli O157 , Humanos , Utah/epidemiología , Preescolar , Escherichia coli O157/aislamiento & purificación , Niño , Femenino , Masculino , Infecciones por Escherichia coli/epidemiología , Lactante , Adolescente , Riego Agrícola , Microbiología del Agua , Escherichia coli Shiga-Toxigénica/aislamiento & purificación
2.
PLoS One ; 17(5): e0267984, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35594241

RESUMEN

A major challenge in sustainable agriculture is finding solutions to manage crop-damaging pests such as herbivores while protecting beneficial organisms such as pollinators. Squash is a highly pollinator-dependent crop that is also attractive to herbivores like the striped cucumber beetle. While synthetic insecticides can provide control of insect pests, they can also affect non-target organisms such as pollinators. Thus, growers need to balance pest management with pollinator protection to ensure optimal yield. Thiamethoxam is a commonly used systemic insecticide that translocates throughout plants, leaving residues in nectar and pollen. The aim of this study was to evaluate whether there are uses of this insecticide that provides efficient pest control while minimizing pesticide pollinator exposure. Specifically, we tested how different prophylactic application methods (seed treatments, in-furrow applications, and early foliar sprays) of commercially available thiamethoxam products impact pest control, bee visitation, yield, and pesticide residues in flowers of squash crops. We found that among the different methods of thiamethoxam application, in-furrow application best prevented defoliation and resulted in the highest fruit weight and number. However, it also produced the most frequent and highest concentrations of thiamethoxam in nectar and pollen, reaching lethal levels for squash bees. Our study provides evidence that under current application methods, thiamethoxam does not provide a sustainable solution for squash growers and further research is required on more efficient pesticide delivery methods, as well as non-pesticide pest control measurements.


Asunto(s)
Cucurbita , Insecticidas , Animales , Abejas , Productos Agrícolas , Cucurbita/química , Insecticidas/análisis , Neonicotinoides , Control de Plagas , Néctar de las Plantas/química , Tiametoxam
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA