Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Eur Heart J ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38751064

RESUMEN

BACKGROUND AND AIMS: Risk scores are proposed for genetic arrhythmias. Having proposed in 2010 one such score (M-FACT) for the long QT syndrome (LQTS), this study aims to test whether adherence to its suggestions would be appropriate. METHODS: LQT1/2/3 and genotype-negative patients without aborted cardiac arrest (ACA) before diagnosis or cardiac events (CEs) below age 1 were included in the study, focusing on an M-FACT score ≥2 (intermediate/high risk), either at presentation (static) or during follow-up (dynamic), previously associated with 40% risk of implantable cardioverter defibrillator (ICD) shocks within 4 years. RESULTS: Overall, 946 patients (26 ± 19 years at diagnosis, 51% female) were included. Beta-blocker (ßB) therapy in 94% of them reduced the rate of those with a QTc ≥500 ms from 18% to 12% (P < .001). During 7 ± 6 years of follow-up, none died; 4% had CEs, including 0.4% with ACA. A static M-FACT ≥2 was present in 110 patients, of whom 106 received ßBs. In 49/106 patients with persistent dynamic M-FACT ≥2, further therapeutic optimization (left cardiac sympathetic denervation in 55%, mexiletine in 31%, and ICD at 27%) resulted in just 7 (14%) patients with CEs (no ACA), with no CEs in the remaining 57. Additionally, 32 patients developed a dynamic M-FACT ≥2 but, after therapeutic optimization, only 3 (9%) had CEs. According to an M-FACT score ≥2, a total of 142 patients should have received an ICD, but only 22/142 (15%) were implanted, with shocks reported in 3. CONCLUSIONS: Beta-blockers often shorten QTc, thus changing risk scores and ICD indications for primary prevention. Yearly risk reassessment with therapy optimization leads to fewer ICD implants (3%) without increasing life-threatening events.

2.
JACC Heart Fail ; 10(10): 714-727, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36175056

RESUMEN

BACKGROUND: The risk of adverse cardiovascular events in patients with acute myocarditis (AM) and desmosomal gene variants (DGV) remains unknown. OBJECTIVES: The purpose of this study was to ascertain the risk of death, ventricular arrhythmias, recurrent myocarditis, and heart failure (main endpoint) in patients with AM and pathogenic or likely pathogenetic DGV. METHODS: In a retrospective international study from 23 hospitals, 97 patients were included: 36 with AM and DGV (DGV[+]), 25 with AM and negative gene testing (DGV[-]), and 36 with AM without genetics testing. All patients had troponin elevation plus findings consistent with AM on histology or at cardiac magnetic resonance (CMR). In 86 patients, CMR changes in function and structure were re-assessed at follow-up. RESULTS: In the DGV(+) AM group (88.9% DSP variants), median age was 24 years, 91.7% presented with chest pain, and median left ventricular ejection fraction (LVEF) was 56% on CMR (P = NS vs the other 2 groups). Kaplan-Meier curves demonstrated a higher risk of the main endpoint in DGV(+) AM compared with DGV(-) and without genetics testing patients (62.3% vs 17.5% vs 5.3% at 5 years, respectively; P < 0.0001), driven by myocarditis recurrence and ventricular arrhythmias. At follow-up CMR, a higher number of late gadolinium enhanced segments was found in DGV(+) AM. CONCLUSIONS: Patients with AM and evidence of DGV have a higher incidence of adverse cardiovascular events compared with patients with AM without DGV. Further prospective studies are needed to ascertain if genetic testing might improve risk stratification of patients with AM who are considered at low risk.


Asunto(s)
Insuficiencia Cardíaca , Miocarditis , Gadolinio , Humanos , Miocarditis/genética , Estudios Retrospectivos , Volumen Sistólico , Troponina , Función Ventricular Izquierda , Adulto Joven
3.
Biomolecules ; 12(8)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-36008935

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is a rare inherited disorder, whose genetic cause is elusive in about 50-70% of cases. ACM presents a variable disease course which could be influenced by genetics. We performed next-generation sequencing on a panel of 174 genes associated with inherited cardiovascular diseases on 82 ACM probands (i) to describe and classify the pathogenicity of rare variants according to the American College of Medical Genetics and Genomics both for ACM-associated genes and for genes linked to other cardiovascular genetic conditions; (ii) to assess, for the first time, the impact of common variants on the ACM clinical disease severity by genotype-phenotype correlation and survival analysis. We identified 15 (likely) pathogenic variants and 66 variants of uncertain significance in ACM-genes and 4 high-impact variants in genes never associated with ACM (ABCC9, APOB, DPP6, MIB1), which deserve future consideration. In addition, we found 69 significant genotype-phenotype associations between common variants and clinical parameters. Arrhythmia-associated polymorphisms resulted in an increased risk of arrhythmic events during patients' follow-up. The description of the genetic framework of our population and the observed genotype-phenotype correlation constitutes the starting point to address the current lack of knowledge in the genetics of ACM.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Arritmias Cardíacas/genética , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/patología , Estudios de Asociación Genética , Humanos , Fenotipo
4.
Eur Heart J ; 42(46): 4743-4755, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34505893

RESUMEN

AIMS: Mutation type, location, dominant-negative IKs reduction, and possibly loss of cyclic adenosine monophosphate (cAMP)-dependent IKs stimulation via protein kinase A (PKA) influence the clinical severity of long QT syndrome type 1 (LQT1). Given the malignancy of KCNQ1-p.A341V, we assessed whether mutations neighbouring p.A341V in the S6 channel segment could also increase arrhythmic risk. METHODS AND RESULTS: Clinical and genetic data were obtained from 1316 LQT1 patients [450 families, 166 unique KCNQ1 mutations, including 277 p.A341V-positive subjects, 139 patients with p.A341-neighbouring mutations (91 missense, 48 non-missense), and 900 other LQT1 subjects]. A first cardiac event represented the primary endpoint. S6 segment missense variant characteristics, particularly cAMP stimulation responses, were analysed by cellular electrophysiology. p.A341-neighbouring mutation carriers had a QTc shorter than p.A341V carriers (477 ± 33 vs. 490 ± 44 ms) but longer than the remaining LQT1 patient population (467 ± 41 ms) (P < 0.05 for both). Similarly, the frequency of symptomatic subjects in the p.A341-neighbouring subgroup was intermediate between the other two groups (43% vs. 73% vs. 20%; P < 0.001). These differences in clinical severity can be explained, for p.A341V vs. p.A341-neighbouring mutations, by the p.A341V-specific impairment of IKs regulation. The differences between the p.A341-neighbouring subgroup and the rest of LQT1 mutations may be explained by the functional importance of the S6 segment for channel activation. CONCLUSION: KCNQ1 S6 segment mutations surrounding p.A341 increase arrhythmic risk. p.A341V-specific loss of PKA-dependent IKs enhancement correlates with its phenotypic severity. Cellular studies providing further insights into IKs-channel regulation and knowledge of structure-function relationships could improve risk stratification. These findings impact on clinical management.


Asunto(s)
Síndrome de Romano-Ward , Humanos , Canal de Potasio KCNQ1/genética , Mutación , Mutación Missense , Síndrome de Romano-Ward/genética
5.
EMBO Mol Med ; 13(9): e14365, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34337880

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is hallmarked by ventricular fibro-adipogenic alterations, contributing to cardiac dysfunctions and arrhythmias. Although genetically determined (e.g., PKP2 mutations), ACM phenotypes are highly variable. More data on phenotype modulators, clinical prognosticators, and etiological therapies are awaited. We hypothesized that oxidized low-density lipoprotein (oxLDL)-dependent activation of PPARγ, a recognized effector of ACM adipogenesis, contributes to disease pathogenesis. ACM patients showing high plasma concentration of oxLDL display severe clinical phenotypes in terms of fat infiltration, ventricular dysfunction, and major arrhythmic event risk. In ACM patient-derived cardiac cells, we demonstrated that oxLDLs are major cofactors of adipogenesis. Mechanistically, the increased lipid accumulation is mediated by oxLDL cell internalization through CD36, ultimately resulting in PPARγ upregulation. By boosting oxLDL in a Pkp2 heterozygous knock-out mice through high-fat diet feeding, we confirmed in vivo the oxidized lipid dependency of cardiac adipogenesis and right ventricle systolic impairment, which are counteracted by atorvastatin treatment. The modulatory role of oxidized lipids on ACM adipogenesis, demonstrated at cellular, mouse, and patient levels, represents a novel risk stratification tool and a target for ACM pharmacological strategies.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Animales , Arritmias Cardíacas/etiología , Displasia Ventricular Derecha Arritmogénica/genética , Humanos , Lipoproteínas LDL , Ratones , Fenotipo
6.
Circ Genom Precis Med ; 14(4): e003289, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34309407

RESUMEN

BACKGROUND: The proliferation of genetic profiling has revealed many associations between genetic variations and disease. However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants currently annotated as pathogenic are more common in healthy populations than previously thought. In addition, novel and rare variants are frequently observed in genes associated with disease both in healthy individuals and those under suspicion of disease. This raises the question of whether these variants can be useful predictors of disease. To answer this question, we assessed the degree to which the presence of a variant in the cardiac potassium channel gene KCNH2 was diagnostically predictive for the autosomal dominant long QT syndrome. METHODS: We estimated the probability of a long QT diagnosis given the presence of each KCNH2 variant using Bayesian methods that incorporated variant features such as changes in variant function, protein structure, and in silico predictions. We call this estimate the posttest probability of disease. Our method was applied to over 4000 individuals heterozygous for 871 missense or in-frame insertion/deletion variants in KCNH2 and validated against a separate international cohort of 933 individuals heterozygous for 266 missense or in-frame insertion/deletion variants. RESULTS: Our method was well-calibrated for the observed fraction of heterozygotes diagnosed with long QT syndrome. Heuristically, we found that the innate diagnostic information one learns about a variant from 3-dimensional variant location, in vitro functional data, and in silico predictors is equivalent to the diagnostic information one learns about that same variant by clinically phenotyping 10 heterozygotes. Most importantly, these data can be obtained in the absence of any clinical observations. CONCLUSIONS: We show how variant-specific features can inform a prior probability of disease for rare variants even in the absence of clinically phenotyped heterozygotes.


Asunto(s)
Canal de Potasio ERG1 , Heterocigoto , Mutación INDEL , Síndrome de QT Prolongado , Mutación Missense , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética
7.
Stem Cell Res ; 54: 102418, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34130155

RESUMEN

In this study we describe the generation and characterization of an human induced pluripotent stem cell (hiPSC) line from a long QT syndrome type 1 (LQT1) patient carrying the KCNQ1 c.940 G > A (p.Gly314Ser) mutation. This patient-specific iPSC line has been obtained by using non-integrational Sendai reprogramming method, expresses pluripotency markers and has the capacity to differentiate into the three germ layers and into spontaneously beating cardiomyocytes (iPSC-CMs).


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Romano-Ward , Línea Celular , Humanos , Canal de Potasio KCNQ1/genética , Mutación
8.
Cardiovasc Res ; 117(3): 767-779, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32173736

RESUMEN

AIMS: In long QT syndrome (LQTS) patients, modifier genes modulate the arrhythmic risk associated with a disease-causing mutation. Their recognition can improve risk stratification and clinical management, but their discovery represents a challenge. We tested whether a cellular-driven approach could help to identify new modifier genes and especially their mechanism of action. METHODS AND RESULTS: We generated human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) from two patients carrying the same KCNQ1-Y111C mutation, but presenting opposite clinical phenotypes. We showed that the phenotype of the iPSC-CMs derived from the symptomatic patient is due to impaired trafficking and increased degradation of the mutant KCNQ1 and wild-type human ether-a-go-go-related gene. In the iPSC-CMs of the asymptomatic (AS) patient, the activity of an E3 ubiquitin-protein ligase (Nedd4L) involved in channel protein degradation was reduced and resulted in a decreased arrhythmogenic substrate. Two single-nucleotide variants (SNVs) on the Myotubularin-related protein 4 (MTMR4) gene, an interactor of Nedd4L, were identified by whole-exome sequencing as potential contributors to decreased Nedd4L activity. Correction of these SNVs by CRISPR/Cas9 unmasked the LQTS phenotype in AS cells. Importantly, the same MTMR4 variants were present in 77% of AS Y111C mutation carriers of a separate cohort. Thus, genetically mediated interference with Nedd4L activation seems associated with protective effects. CONCLUSION: Our finding represents the first demonstration of the cellular mechanism of action of a protective modifier gene in LQTS. It provides new clues for advanced risk stratification and paves the way for the design of new therapies targeting this specific molecular pathway.


Asunto(s)
Genes Modificadores , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/genética , Mutación , Polimorfismo de Nucleótido Simple , Proteínas Tirosina Fosfatasas no Receptoras/genética , Células Cultivadas , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Canal de Potasio KCNQ1/metabolismo , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Fenotipo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteolisis
9.
Circulation ; 142(25): 2405-2415, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33073610

RESUMEN

BACKGROUND: The diagnosis of long QT syndrome (LQTS) is rather straightforward. We were surprised by realizing that, despite long-standing experience, we were making occasional diagnostic errors by considering as affected subjects who, over time, resulted as not affected. These individuals were all actively practicing sports-an observation that helped in the design of our study. METHODS: We focused on subjects referred to our center by sports medicine doctors on suspicion of LQTS because of marked repolarization abnormalities on the ECG performed during the mandatory medical visit necessary in Italy to obtain the certificate of eligibility to practice sports. They all underwent our standard procedures involving both a resting and 12-lead ambulatory ECG, an exercise stress test, and genetic screening. RESULTS: There were 310 such consecutive subjects, all actively practicing sports with many hours of intensive weekly training. Of them, 111 had a normal ECG, different cardiac diseases, or were lost to follow-up and exited the study. Of the remaining 199, all with either clear QTc prolongation and/or typical repolarization abnormalities, 121 were diagnosed as affected based on combination of ECG abnormalities with positive genotyping (QTc, 482±35 ms). Genetic testing was negative in 78 subjects, but 45 were nonetheless diagnosed as affected by LQTS based on unequivocal ECG abnormalities (QTc, 472±33 ms). The remaining 33, entirely asymptomatic and with a negative family history, showed an unexpected and practically complete normalization of the ECG abnormalities (their QTc shortened from 492±37 to 423±25 ms [P<0.001]; their Schwartz score went from 3.0 to 0.06) after detraining. They were considered not affected by congenital LQTS and are henceforth referred to as "cases." Furthermore, among them, those who resumed similarly heavy physical training showed reappearance of the repolarization abnormalities. CONCLUSION: It is not uncommon to suspect LQTS among individuals actively practicing sports based on marked repolarization abnormalities. Among those who are genotype-negative, >40% normalize their ECG after detraining, but the abnormalities tend to recur with resumption of training. These individuals are not affected by congenital LQTS but could have a form of acquired LQTS. Care should be exercised to avoid diagnostic errors.


Asunto(s)
Potenciales de Acción , Atletas , Electrocardiografía Ambulatoria , Prueba de Esfuerzo , Ejercicio Físico , Pruebas Genéticas , Frecuencia Cardíaca , Síndrome de QT Prolongado/diagnóstico , Potenciales de Acción/genética , Adolescente , Adulto , Niño , Errores Diagnósticos , Femenino , Predisposición Genética a la Enfermedad , Frecuencia Cardíaca/genética , Humanos , Italia , Síndrome de QT Prolongado/congénito , Síndrome de QT Prolongado/fisiopatología , Masculino , Persona de Mediana Edad , Fenotipo , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Adulto Joven
10.
Circulation ; 142(4): 324-338, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32429735

RESUMEN

BACKGROUND: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P<10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). CONCLUSIONS: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Síndrome de QT Prolongado/genética , Adolescente , Adulto , Edad de Inicio , Alelos , Estudios de Casos y Controles , Electrocardiografía , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/mortalidad , Síndrome de QT Prolongado/terapia , Herencia Multifactorial , Fenotipo , Polimorfismo de Nucleótido Simple , Pronóstico , Índice de Severidad de la Enfermedad , Adulto Joven
11.
Eur Heart J ; 37(18): 1456-64, 2016 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-26715165

RESUMEN

AIMS: Acquired long QT syndrome (aLQTS) exhibits QT prolongation and Torsades de Pointes ventricular tachycardia triggered by drugs, hypokalaemia, or bradycardia. Sometimes, QTc remains prolonged despite elimination of triggers, suggesting the presence of an underlying genetic substrate. In aLQTS subjects, we assessed the prevalence of mutations in major LQTS genes and their probability of being carriers of a disease-causing genetic variant based on clinical factors. METHODS AND RESULTS: We screened for the five major LQTS genes among 188 aLQTS probands (55 ± 20 years, 140 females) from Japan, France, and Italy. Based on control QTc (without triggers), subjects were designated 'true aLQTS' (QTc within normal limits) or 'unmasked cLQTS' (all others) and compared for QTc and genetics with 2379 members of 1010 genotyped congenital long QT syndrome (cLQTS) families. Cardiac symptoms were present in 86% of aLQTS subjects. Control QTc of aLQTS was 453 ± 39 ms, shorter than in cLQTS (478 ± 46 ms, P < 0.001) and longer than in non-carriers (406 ± 26 ms, P < 0.001). In 53 (28%) aLQTS subjects, 47 disease-causing mutations were identified. Compared with cLQTS, in 'true aLQTS', KCNQ1 mutations were much less frequent than KCNH2 (20% [95% CI 7-41%] vs. 64% [95% CI 43-82%], P < 0.01). A clinical score based on control QTc, age, and symptoms allowed identification of patients more likely to carry LQTS mutations. CONCLUSION: A third of aLQTS patients carry cLQTS mutations, those on KCNH2 being more common. The probability of being a carrier of cLQTS disease-causing mutations can be predicted by simple clinical parameters, thus allowing possibly cost-effective genetic testing leading to cascade screening for identification of additional at-risk family members.


Asunto(s)
Síndrome de QT Prolongado , Electrocardiografía , Femenino , Francia , Pruebas Genéticas , Humanos , Italia , Japón , Masculino , Persona de Mediana Edad , Mutación
12.
PLoS One ; 10(1): e0116636, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25617626

RESUMEN

BACKGROUND: Primary myelofibrosis (PMF) is an acquired clonal disease of the hematopoietic stem cell compartment, characterized by bone marrow fibrosis, anemia, splenomegaly and extramedullary hematopoiesis. About 60% of patients with PMF harbor a somatic mutation of the JAK2 gene (JAK2-V617F) in their hematopoietic lineage. Recently, a splicing isoform of JAK2, lacking exon 14 (JAK2Δ14) was described in patients affected by myeloproliferative diseases. MATERIALS AND METHODS: By using a specific RT-qPCR method, we measured the ratio between the splicing isoform and the JAK2 full-length transcript (JAK2+14) in granulocytes, isolated from peripheral blood, of forty-four patients with PMF and nine healthy donors. RESULTS: We found that JAK2Δ14 was only slightly increased in patients and, at variance with published data, the splicing isoform was also detectable in healthy controls. We also found that, in patients bearing the JAK2-V617F mutation, the percentage of mutated alleles correlated with the observed increase in JAK2Δ14. Homozygosity for the mutation was also associated with a higher level of JAK2+14. Bioinformatic analysis indicates the possibility that the G>T transversion may interfere with the correct splicing of exon 14 by modifying a splicing regulatory sequence. CONCLUSIONS: Increased levels of JAK2 full-length transcript and a small but significant increase in JAK2 exon 14 skipping, are associated with the JAK2-V617F allele burden in PMF granulocytes. Our data do not confirm a previous claim that the production of the JAK2Δ14 isoform is related to the pathogenesis of PMF.


Asunto(s)
Janus Quinasa 2/genética , Mielofibrosis Primaria/genética , Empalme del ARN , Línea Celular , Biología Computacional , Exones , Perfilación de la Expresión Génica , Humanos , Janus Quinasa 2/química , Mutación , Análisis de Regresión , Eliminación de Secuencia
13.
Circ Cardiovasc Genet ; 6(4): 354-61, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23856471

RESUMEN

BACKGROUND: Long-QT syndrome (LQTS) is characterized by such striking clinical heterogeneity that, even among family members carrying the same mutation, clinical outcome can range between sudden death and no symptoms. We investigated the role of genetic variants as modifiers of risk for cardiac events in patients with LQTS. METHODS AND RESULTS: In a matched case-control study including 112 patient duos with LQTS from France, Italy, and Japan, 25 polymorphisms were genotyped based on either their association with QTc duration in healthy populations or on their role in adrenergic responses. The duos were composed of 2 relatives harboring the same heterozygous KCNQ1 or KCNH2 mutation: 1 with cardiac events and 1 asymptomatic and untreated. The findings were then validated in 2 independent founder populations totaling 174 symptomatic and 162 asymptomatic patients with LQTS, and a meta-analysis was performed. The KCNQ1 rs2074238 T-allele was significantly associated with a decreased risk of symptoms 0.34 (0.19-0.61; P<0.0002) and with shorter QTc (P<0.0001) in the combined discovery and replication cohorts. CONCLUSIONS: We provide evidence that the KCNQ1 rs2074238 polymorphism is an independent risk modifier with the minor T-allele conferring protection against cardiac events in patients with LQTS. This finding is a step toward a novel approach for risk stratification in patients with LQTS.


Asunto(s)
Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/genética , Polimorfismo de Nucleótido Simple , Alelos , Estudios de Casos y Controles , Estudios de Cohortes , Bases de Datos Genéticas , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Femenino , Frecuencia de los Genes , Genotipo , Heterocigoto , Humanos , Síndrome de QT Prolongado/etiología , Masculino , Factores de Riesgo
14.
Circulation ; 127(9): 1009-17, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23388215

RESUMEN

BACKGROUND: Life-threatening disorders of heart rhythm may arise during infancy and can result in the sudden and tragic death of a child. We performed exome sequencing on 2 unrelated infants presenting with recurrent cardiac arrest to discover a genetic cause. METHODS AND RESULTS: We ascertained 2 unrelated infants (probands) with recurrent cardiac arrest and dramatically prolonged QTc interval who were both born to healthy parents. The 2 parent-child trios were investigated with the use of exome sequencing to search for de novo genetic variants. We then performed follow-up candidate gene screening on an independent cohort of 82 subjects with congenital long-QT syndrome without an identified genetic cause. Biochemical studies were performed to determine the functional consequences of mutations discovered in 2 genes encoding calmodulin. We discovered 3 heterozygous de novo mutations in either CALM1 or CALM2, 2 of the 3 human genes encoding calmodulin, in the 2 probands and in 2 additional subjects with recurrent cardiac arrest. All mutation carriers were infants who exhibited life-threatening ventricular arrhythmias combined variably with epilepsy and delayed neurodevelopment. Mutations altered residues in or adjacent to critical calcium binding loops in the calmodulin carboxyl-terminal domain. Recombinant mutant calmodulins exhibited several-fold reductions in calcium binding affinity. CONCLUSIONS: Human calmodulin mutations disrupt calcium ion binding to the protein and are associated with a life-threatening condition in early infancy. Defects in calmodulin function will disrupt important calcium signaling events in heart, affecting membrane ion channels, a plausible molecular mechanism for potentially deadly disturbances in heart rhythm during infancy.


Asunto(s)
Calmodulina/genética , Paro Cardíaco/genética , Síndrome de QT Prolongado/genética , Secuencia de Aminoácidos , Señalización del Calcio/genética , Preescolar , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Estudios de Asociación Genética/métodos , Paro Cardíaco/diagnóstico , Paro Cardíaco/fisiopatología , Humanos , Lactante , Recién Nacido , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/fisiopatología , Masculino , Datos de Secuencia Molecular , Mutación , Linaje , Recurrencia
15.
J Am Coll Cardiol ; 60(24): 2515-24, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23158531

RESUMEN

OBJECTIVES: The study assessed whether heart rate (HR) reduction following an exercise stress test (ExStrT), an easily quantifiable marker of vagal reflexes, might identify high- and low-risk long QT syndrome (LQTS) type 1 (LQT1) patients. BACKGROUND: Identification of LQTS patients more likely to be symptomatic remains elusive. We have previously shown that depressed baroreflex sensitivity, an established marker of reduced vagal reflexes, predicts low probability of symptoms among LQT1. METHODS: We studied 169 LQTS genotype-positive patients < 50 years of age who performed an ExStrT with the same protocol, on and off ß-blockers including 47 South African LQT1 patients all harboring the KCNQ1-A341V mutation and 122 Italian LQTS patients with impaired (I(Ks)-, 66 LQT1) or normal (I(Ks)+, 50 LQT2 and 6 LQT3) I(Ks) current. RESULTS: Despite similar maximal HR and workload, by the first minute after cessation of exercise the symptomatic patients in both I(Ks)- groups had a greater HR reduction compared with the asymptomatic (19 ± 7 beats/min vs. 13 ± 5 beats/min and 27 ± 10 beats/min vs. 20 ± 8 beats/min, both p = 0.009). By contrast, there was no difference between the I(Ks)+ symptomatic and asymptomatic patients (23 ± 9 beats/min vs. 26 ± 9 beats/min, p = 0.47). LQT1 patients in the upper tertile for HR reduction had a higher risk of being symptomatic (odds ratio: 3.28, 95% confidence interval: 1.3 to 8.3, p = 0.012). CONCLUSIONS: HR reduction following exercise identifies LQT1 patients at high or low arrhythmic risk, independently of ß-blocker therapy, and contributes to risk stratification. Intense exercise training, which potentiates vagal reflexes, should probably be avoided by LQT1 patients.


Asunto(s)
Frecuencia Cardíaca/fisiología , Síndrome de QT Prolongado/fisiopatología , Nervio Vago/fisiología , Adulto , Electrocardiografía , Prueba de Esfuerzo , Femenino , Humanos , Síndrome de QT Prolongado/genética , Masculino , Persona de Mediana Edad , Medición de Riesgo
16.
Circulation ; 120(18): 1761-7, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19841298

RESUMEN

BACKGROUND: The prevalence of genetic arrhythmogenic diseases is unknown. For the long-QT syndrome (LQTS), figures ranging from 1:20 000 to 1:5000 were published, but none was based on actual data. Our objective was to define the prevalence of LQTS. METHODS AND RESULTS: In 18 maternity hospitals, an ECG was performed in 44 596 infants 15 to 25 days old (43 080 whites). In infants with a corrected QT interval (QTc) >450 ms, the ECG was repeated within 1 to 2 weeks. Genetic analysis, by screening 7 LQTS genes, was performed in 28 of 31 (90%) and in 14 of 28 infants (50%) with, respectively, a QTc >470 ms or between 461 and 470 ms. A QTc of 451 to 460, 461 to 470, and >470 ms was observed in 177 (0.41%), 28 (0.06%), and 31 infants (0.07%). Among genotyped infants, disease-causing mutations were found in 12 of 28 (43%) with a QTc >470 ms and in 4 of 14 (29%) with a QTc of 461 to 470 ms. One genotype-negative infant (QTc 482 ms) was diagnosed as affected by LQTS on clinical grounds. Among family members of genotype-positive infants, 51% were found to carry disease-causing mutations. In total, 17 of 43 080 white infants were affected by LQTS, demonstrating a prevalence of at least 1:2534 apparently healthy live births (95% confidence interval, 1:1583 to 1:4350). CONCLUSIONS: This study provides the first data-based estimate of the prevalence of LQTS among whites. On the basis of the nongenotyped infants with QTc between 451 and 470 ms, we advance the hypothesis that this prevalence might be close to 1:2000. ECG-guided molecular screening can identify most infants affected by LQTS and unmask affected relatives, thus allowing effective preventive measures.


Asunto(s)
Síndrome de QT Prolongado/epidemiología , Síndrome de QT Prolongado/genética , Mutación , Análisis Mutacional de ADN , Electrocardiografía , Salud de la Familia , Genotipo , Humanos , Recién Nacido , Tamizaje Masivo , Prevalencia , Estudios Prospectivos
17.
Heart Rhythm ; 6(2): 212-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19187913

RESUMEN

BACKGROUND: Genetic screening of long QT syndrome (LQTS) fails to identify disease-causing mutations in about 30% of patients. So far, molecular screening has focused mainly on coding sequence mutations or on substitutions at canonical splice sites. OBJECTIVE: The purpose of this study was to explore the possibility that intronic variants not at canonical splice sites might affect splicing regulatory elements, lead to aberrant transcripts, and cause LQTS. METHOD: Molecular screening was performed through DHPLC and sequence analysis. The role of the intronic mutation identified was assessed with a hybrid minigene splicing assay. RESULTS: A three-generation LQTS family was investigated. Molecular screening failed to identify an obvious disease-causing mutation in the coding sequences of the major LQTS genes but revealed an intronic A-to-G substitution in KCNH2 (IVS9-28A/G) cosegregating with the clinical phenotype in family members. In vitro analysis proved that the mutation disrupts the acceptor splice site definition by affecting the branch point (BP) sequence and promoting intron retention. We further demonstrated a tight functional relationship between the BP and the polypyrimidine tract, whose weakness is responsible for the pathological effect of the IVS9-28A/G mutation. CONCLUSIONS: We identified a novel BP mutation in KCNH2 that disrupts the intron 9 acceptor splice site definition and causes LQT2. The present finding demonstrates that intronic mutations affecting pre-mRNA processing may contribute to the failure of traditional molecular screening in identifying disease-causing mutations in LQTS subjects and offers a rationale strategy for the reduction of genotype-negative cases.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Síndrome de QT Prolongado/genética , Mutación Puntual , Adulto , Muerte Súbita Cardíaca , Canal de Potasio ERG1 , Femenino , Pruebas Genéticas , Genotipo , Humanos , Intrones , Escala de Lod , Masculino , Linaje , Fenotipo , Sitios de Empalme de ARN , Empalme del ARN , Transcripción Genética
18.
J Mol Cell Cardiol ; 44(3): 571-81, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18222468

RESUMEN

Life-threatening arrhythmias have been suspected as one cause of the sudden infant death syndrome (SIDS), and this hypothesis is supported by the observation that mutations in arrhythmia susceptibility genes occur in 5-10% of cases. However, the functional consequences of cardiac potassium channel gene mutations associated with SIDS and how these alleles might mechanistically predispose to sudden death are unknown. To address these questions, we studied four missense KCNH2 (encoding HERG) variants, one compound KCNH2 genotype, and a missense KCNQ1 mutation all previously identified in Norwegian SIDS cases. Three of the six variants exhibited functional impairments while three were biophysically similar to wild-type channels (KCNH2 variants V279M, R885C, and S1040G). When co-expressed with WT-HERG, R273Q and K897T/R954C generated currents resembling the rapid component of the cardiac delayed rectifier current (I(Kr)) but with significantly diminished amplitude. Action potential modeling demonstrated that this level of functional impairment was sufficient to evoke increased action potential duration and pause-dependent early afterdepolarizations. By contrast, KCNQ1-I274V causes a gain-of-function in I(Ks) characterized by increased current density, faster activation, and slower deactivation leading to accumulation of instantaneous current upon repeated stimulation. Action potential simulations using a Markov model of heterozygous I274V-I(Ks) incorporated into the Luo-Rudy (LRd) ventricular cell model demonstrated marked rate-dependent shortening of action potential duration predicting a short QT phenotype. Our results indicate that certain potassium channel mutations associated with SIDS confer overt functional defects consistent with either LQTS or SQTS, and further emphasize the role of congenital arrhythmia susceptibility in this syndrome.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Mutación Missense , Muerte Súbita del Lactante/genética , Animales , Células CHO , Cricetinae , Cricetulus , Canal de Potasio ERG1 , Electrofisiología , Canales de Potasio Éter-A-Go-Go/fisiología , Predisposición Genética a la Enfermedad , Humanos , Recién Nacido , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Cadenas de Markov , Potenciales de la Membrana , Transfección
19.
Circ Arrhythm Electrophysiol ; 1(5): 370-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19808432

RESUMEN

BACKGROUND: Inherited cardiac arrhythmia susceptibility contributes to sudden death during infancy and may contribute to perinatal and neonatal mortality, but the molecular basis of this risk and the relationship to genetic disorders presenting later in life is unclear. We studied the functional and pharmacological properties of a novel de novo cardiac sodium channel gene (SCN5A) mutation associated with an extremely severe perinatal presentation of long-QT syndrome in unrelated probands of different ethnicity. METHODS AND RESULTS: Two subjects exhibiting severe fetal and perinatal ventricular arrhythmias were screened for SCN5A mutations, and the functional properties of a novel missense mutation (G1631D) were determined by whole-cell patch clamp recording. In vitro electrophysiological studies revealed a profound defect in sodium channel function characterized by approximately 10-fold slowing of inactivation, increased persistent current, slowing of recovery from inactivation, and depolarized voltage dependence of activation and inactivation. Single-channel recordings demonstrated increased frequency of late openings, prolonged mean open time, and increased latency to first opening for the mutant. Subjects carrying this mutation responded clinically to the combination of mexiletine with propranolol and survived. Pharmacologically, the mutant exhibited 2-fold greater tonic and use-dependent mexiletine block than wild-type channels. The mutant also exhibited enhanced tonic (2.4-fold) and use-dependent block ( approximately 5-fold) by propranolol, and we observed additive effects of the 2 drugs on the mutant. CONCLUSIONS: Our study demonstrates the molecular basis for a malignant perinatal presentation of long-QT syndrome, illustrates novel functional and pharmacological properties of SCN5A-G1631D, which caused the disorder, and reveals therapeutic benefits of propranolol block of mutant sodium channels in this setting.


Asunto(s)
Síndrome de QT Prolongado/genética , Proteínas Musculares/genética , Mutación Missense , Miocardio/metabolismo , Canales de Sodio/genética , Sodio/metabolismo , Potenciales de Acción , Antiarrítmicos/uso terapéutico , Análisis Mutacional de ADN , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Electrocardiografía , Predisposición Genética a la Enfermedad , Edad Gestacional , Humanos , Recién Nacido , Cinética , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/embriología , Síndrome de QT Prolongado/metabolismo , Masculino , Mexiletine/uso terapéutico , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5 , Fenotipo , Propranolol/uso terapéutico , Proteínas Recombinantes/metabolismo , Índice de Severidad de la Enfermedad , Bloqueadores de los Canales de Sodio/uso terapéutico , Canales de Sodio/metabolismo , Resultado del Tratamiento
20.
Circulation ; 115(3): 361-7, 2007 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-17210839

RESUMEN

BACKGROUND: The hypothesis that some cases of sudden infant death syndrome (SIDS) could be caused by long-QT syndrome (LQTS) has been supported by molecular studies. However, there are inadequate data regarding the true prevalence of mutations in arrhythmia-susceptibility genes among SIDS cases. Given the importance and potential implications of these observations, we performed a study to more accurately quantify the contribution to SIDS of LQTS gene mutations and rare variants. METHODS AND RESULTS: Molecular screening of 7 genes (KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, KCNJ2, CAV3) associated with LQTS was performed with denaturing high-performance liquid chromatography and nucleotide sequencing of genomic DNA from 201 cases diagnosed as SIDS according to the Nordic Criteria, and from 182 infant and adult controls. All SIDS and control cases originated from the same regions in Norway. Genetic analysis was blinded to diagnosis. Mutations and rare variants were found in 26 of 201 cases (12.9%). On the basis of their functional effect, however, we considered 8 mutations and 7 rare variants found in 19 of 201 cases as likely contributors to sudden death (9.5%; 95% CI, 5.8 to 14.4%). CONCLUSIONS: We demonstrated that 9.5% of cases diagnosed as SIDS carry functionally significant genetic variants in LQTS genes. The present study demonstrates that sudden arrhythmic death is an important contributor to SIDS. As these variants likely modify ventricular repolarization and QT interval duration, our results support the debated concept that an ECG would probably identify most infants at risk for sudden death due to LQTS either in infancy or later on in life.


Asunto(s)
Electrocardiografía , Variación Genética , Síndrome de QT Prolongado/complicaciones , Síndrome de QT Prolongado/genética , Muerte Súbita del Lactante/etiología , Muerte Súbita del Lactante/genética , Adulto , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/genética , Estudios de Casos y Controles , Caveolina 3/genética , Preescolar , Femenino , Pruebas Genéticas/métodos , Humanos , Lactante , Síndrome de QT Prolongado/diagnóstico , Masculino , Persona de Mediana Edad , Proteínas Musculares/genética , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.5 , Noruega , Canales de Potasio/genética , Factores de Riesgo , Método Simple Ciego , Canales de Sodio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA