Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 471: 134303, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38669921

RESUMEN

Despite the widespread use of biochar for soil and sediment remediation, little is known about the impact of pyrolysis temperature on the biogeochemistry of arsenic (As) and lead (Pb) and microorganisms in sediment under reducing conditions. In this study, we investigated the effects of pyrolysis temperature and the addition of glucose on the release and transformation of As and Pb, as well as their potential effects on the bacterial community in contaminated sediments. The addition of biochar altered the geochemical cycle of As, as it favors specific bacterial groups capable of changing species from As(V) to As(III) through fermentation, sulfate respiration and nitrate reduction. The carbon quality and content of N and S in solution shaped the pH and redox potential in a way that changed the microbial community, favoring Firmicutes and reducing Proteobacteria. This change played a fundamental role in the reductive dissolution of As and Pb minerals. The addition of biochar was the only efficient way to remove Pb, possibly as a function of its sorption and precipitation mechanisms. Such insights could contribute to the production or choice of high-efficiency biochar for the remediation of sediments subjected to redox conditions.


Asunto(s)
Arsénico , Carbón Orgánico , Sedimentos Geológicos , Plomo , Minería , Oxidación-Reducción , Carbón Orgánico/química , Arsénico/química , Arsénico/análisis , Arsénico/metabolismo , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Plomo/química , Pirólisis , Bacterias/metabolismo , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Temperatura
2.
Pest Manag Sci ; 80(6): 2563-2576, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38243771

RESUMEN

BACKGROUND: Natural products present an environmentally attractive alternative to synthetic pesticides which have been implicated in the off-target effect. Currently, the assessment of pesticide toxicity on soil microorganisms relies on the OECD 216 N transformation assay (OECD stands for the Organisation Economic Co-operation and Development, which is a key international standard-setting organisation). We tested the hypotheses that (i) the OECD 216 assay fails to identify unacceptable effects of pesticides on soil microbiota compared to more advanced molecular and standardized tests, and (ii) the natural products tested (dihydrochalcone, isoflavone, aliphatic phenol, and spinosad) are less toxic to soil microbiota compared to a synthetic pesticide compound (3,5-dichloraniline). We determined the following in three different soils: (i) ammonium (NH4 +) and nitrate (NO3 -) soil concentrations, as dictated by the OECD 216 test, and (ii) the abundance of phylogenetically (bacteria and fungi) and functionally distinct microbial groups [ammonia-oxidizing archaea (AOA) and bacteria (AOB)] using quantitative polymerase chain reaction (q-PCR). RESULTS: All pesticides tested exhibited limited persistence, with spinosad demonstrating the highest persistence. None of the pesticides tested showed clear dose-dependent effects on NH4 + and NO3 - levels and the observed effects were <25% of the control, suggesting no unacceptable impacts on soil microorganisms. In contrast, q-PCR measurements revealed (i) distinct negative effects on the abundance of total bacteria and fungi, which were though limited to one of the studied soils, and (ii) a significant reduction in the abundance of both AOA and AOB across soils. This reduction was attributed to both natural products and 3,5-dichloraniline. CONCLUSION: Our findings strongly advocate for a revision of the current regulatory framework regarding the toxicity of pesticides to soil microbiota, which should integrate advanced and well-standardized tools. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Bacterias , Microbiota , Plaguicidas , Microbiología del Suelo , Microbiota/efectos de los fármacos , Plaguicidas/toxicidad , Bacterias/efectos de los fármacos , Bacterias/genética , Productos Biológicos , Hongos/efectos de los fármacos , Hongos/genética , Nitrógeno , Archaea/efectos de los fármacos , Archaea/genética , Contaminantes del Suelo/toxicidad , Suelo/química
3.
Appl Environ Microbiol ; 88(17): e0096322, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36000866

RESUMEN

Plant-parasitic nematodes are an important group of pests causing economic losses in agriculture worldwide. Among the plant-parasitic nematodes, the root-knot (Meloidogyne spp.) and root-lesion nematodes (Pratylenchus spp.) are considered the two most important ones affecting soybeans. In general, they damage soybean roots, causing a reduction of about one-third in productivity. The soil microbial community can exert a suppressive effect on the parasitism of plant-parasitic nematodes. Here, we investigated the effects of soil bacterial diversity on Meloidogyne javanica (Meloidogyne-assay) and Pratylenchus brachyurus (Pratylenchus-assay) suppression by manipulating microbial diversity using the dilution-to-extinction approach in two independent experiments under controlled conditions. Furthermore, we recorded the changes in the soil microbial community induced by plant-parasitic nematode infection. In Meloidogyne-assay, microbial diversity reduced the population density of M. javanica and improved plant performance. In Pratylenchus-assay, microbial diversity sustained the performance of soybean plants even at high levels of P. brachyurus parasitism. Each nematode population affected the relative abundance of different bacterial genera and altered the core microbiome of key groups within the bacterial community. Our findings provide fundamental insights into the interactions between soil bacterial diversity and plant-parasitic nematodes in soybean plants. IMPORTANCE Root-knot and root-lesion nematodes cause losses of billions of dollars every year to agriculture worldwide. Traditionally, they are controlled by using chemical nematicides, which in general have a negative impact on the environment and human health. Fortunately, the soil microbial community may suppress these pests, acting as an environmentally friendly alternative to control nematodes. However, the effects of soil microbial diversity on the parasitism of plant-parasitic nematodes still poorly understood. In this study, we provide fundamental insight into the interactions between soil bacterial diversity and plant-parasitic nematodes in soybean plants, which may be useful for the development of new strategies to control these phytopathogens.


Asunto(s)
Microbiota , Tylenchoidea , Animales , Bacterias/genética , Humanos , Suelo , Glycine max , Tylenchoidea/microbiología
4.
Sci Total Environ ; 827: 154239, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35245545

RESUMEN

Atrazine (ATZ) is one of the most widely used herbicides in the world even though it is classified as a carcinogenic endocrine disruptor. This study focused on how land use (grazing versus cultivation in parallel soils, the latter under no-till with a seven-year history of ATZ application) and bacterial community diversity affected ATZ dissipation. Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Acidobacteria, Verrucomicrobia, Planctomycetes, and Gemmatimonadetes were the dominant phyla in both soils. The mineralization of ATZ was much higher in soils under cultivation up to the onset of moderate diversity depletion (dilution =10-3), corresponding to 44-52% of the amount applied (< 5% in the grazed soil). This was attributed to the higher diversity and complexity of the soils´ bacterial communities which consist of microbial groups that were more adapted as a result of previous exposure to ATZ. In these cases, ATZ dissipation was attributed mainly to mineralization (DT50 = 4-11 d). However, formation of non-extractable ATZ residues was exceptionally important in the other cases (DT50 = 17-44 d). The cultivated soils also presented a higher number of bacterial genera correlated with ATZ dissipation, in which Acidothermus, Aquicela, Arenimonas, Candidatus_Koribacter, Hirschia, MND1, Nitrospira, Occallatibacter, OM27_clade, and Ralstonia are suggested as potential ATZ-degraders. Finally, ATZ dissipation was mostly associated with an abundance of microbial functions related to energy supply and N-metabolism, suggesting co-metabolism is its first biodegradation step.


Asunto(s)
Atrazina , Contaminantes del Suelo , Atrazina/análisis , Bacterias/metabolismo , ARN Ribosómico 16S , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis
5.
FEMS Microbiol Ecol ; 96(9)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32710756

RESUMEN

We assessed the impacts of forest-to-pasture conversion on the dynamic of soil microbial communities, especially those involved in the N-cycle, and their potential functions, using DNA-metagenomic sequencing coupled with the quantification of marker genes for N-cycling. We also evaluated whether the community's dynamic was reestablished with secondary forest growth. In general, the microbial community structure was influenced by changes in soil chemical properties. Aluminum and nitrate significantly correlated to community structure and with 12 out of 21 microbial phyla. The N-related microbial groups and their potential functions were also affected by land-use change, with pasture being clearly different from primary and secondary forest systems. The microbial community analysis demonstrated that forest-to-pasture conversion increased the abundance of different microbial groups related to nitrogen fixation, including Bacteroidetes, Chloroflexi and Firmicutes. In contrast, after pasture abandonment and with the secondary forest regeneration, there was an increase in the abundance of Proteobacteria taxa and denitrification genes. Our multi-analytical approach indicated that the secondary forest presented some signs of resilience, suggesting that the N-related microbial groups and their potential functions can be recovered over time with implications for future ecological restoration programs.


Asunto(s)
Microbiota , Suelo , Bosques , Nitrógeno/análisis , Microbiología del Suelo
6.
FEMS Microbiol Ecol ; 95(3)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30544159

RESUMEN

Amazon rainforest has been subjected to particularly high rates of deforestation caused mainly by the expansion of cattle pasture and agriculture. A commonly observed response to land-use change is a negative impact on biodiversity of plant and animal species. However, its effect on the soil microbial community and ecosystem functioning is still poorly understood. Here, we used a DNA metagenomic sequencing approach to investigate the impact of land-use change on soil microbial community composition and its potential functions in three land-use systems (primary forest, pasture and secondary forest) in the Amazon region. In general, the microbial community structure was influenced by changes in soil physicochemical properties. Aluminum and water-holding capacity significantly correlated to overall community structure and most of microbial phyla. Taxonomic changes were followed by potential functional changes in the soil microbial community, with pasture presenting the most distinct profile in comparison with other sites. Although taxonomic structure was very distinct among sites, we observed a recovery of the potential functions in secondary forest after pasture abandonment. Our findings elucidate a significant shift in belowground microbial taxonomic and potential functional diversity following natural forest re-establishment and have implications for ecological restoration programs in tropical and sub-tropical ecosystems.


Asunto(s)
Conservación de los Recursos Naturales , Restauración y Remediación Ambiental , Microbiota/genética , Bosque Lluvioso , Microbiología del Suelo , Agricultura , Biodiversidad , Ecosistema , Metagenoma , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA