Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065441

RESUMEN

In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development. By analysing how promoting agricultural diversification can enhance food system adaptability to evolving environmental conditions, fostering sustainability and resilience, we discuss recent findings that underscore the main benefits and limitations of these crops from agricultural, food science, and health perspectives, all crucial for responsible and sustainable adoption. Thus, by using a sustainable and holistic approach, this revision analyses how the integration of NUS crops into Mediterranean agrifood systems can enhance agriculture resilience and food quality addressing environmental, nutritional, biomedical, economic, and cultural dimensions, thereby mitigating the risks associated with monoculture practices and bolstering local economies and livelihoods under new climate scenarios.

2.
Biomed Pharmacother ; 178: 117198, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059351

RESUMEN

The prevalence of obesity is increasingly widespread, resembling a global epidemic. Lifestyle changes, such as consumption of high-energy-dense diets and physical inactivity, are major contributors to obesity. Common features of this metabolic pathology involve an imbalance in lipid and glucose homeostasis including dyslipidemia, insulin resistance and adipose tissue dysfunction. Moreover, the importance of the gut microbiota in the development and susceptibility to obesity has recently been highlighted. In recent years, new strategies based on the use of functional foods, in particular bioactive peptides, have been proposed to counteract obesity outcomes. In this context, the present study examines the effects of a lupin protein hydrolysate (LPH) on obesity, dyslipidemia and gut dysbiosis in mice fed a high-fat diet (HFD). After 12 weeks of LPH treatment, mice gained less weight and showed decreased adipose dysfunction compared to the HFD-fed group. HFD-induced dyslipidemia (increased triglycerides, cholesterol and LDL concentration) and insulin resistance were both counteracted by LPH consumption. Discriminant analysis differentially distributed LPH-treated mice compared to non-treated mice. HFD reduced gut ecological parameters, promoted the blooming of deleterious taxa and reduced the abundance of commensal members. Some of these changes were corrected in the LPH group. Finally, correlation analysis suggested that changes in this microbial population could be responsible for the improvement in obesity outcomes. In conclusion, this is the first study to show the effect of LPH on improving weight gain, adiposopathy and gut dysbiosis in the context of diet-induced obesity, pointing to the therapeutic potential of bioactive peptides in metabolic diseases.


Asunto(s)
Dieta Alta en Grasa , Disbiosis , Microbioma Gastrointestinal , Resistencia a la Insulina , Lupinus , Obesidad , Hidrolisados de Proteína , Animales , Masculino , Ratones , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa/efectos adversos , Dislipidemias/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/tratamiento farmacológico , Hidrolisados de Proteína/farmacología
3.
Food Funct ; 15(7): 3722-3730, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38489157

RESUMEN

Bioactive peptides have been considered potential components for the future functional foods and nutraceuticals generation. The enzymatic method of hydrolysis has several advantages compared to those of chemical hydrolysis and fermentation. Despite this fact, the high cost of natural and commercial proteases limits the commercialization of hydrolysates in the food and pharmacological industries. For this reason, more efficient and economically interesting techniques, such as the immobilisation of the enzyme, are gaining attention. In the present study, a new protein hydrolysate from Lupinus angustifolius was generated by enzymatic hydrolysis through the immobilisation of the enzyme alcalase® (imLPH). After the chemical and nutritional characterization of the imLPH, an in vivo study was carried out in order to evaluate the effect of 12 weeks treatment with imLPH on the plasmatic lipid profile and antioxidant status in western-diet-fed apolipoprotein E knockout mice. The immobilisation of alcalase® generated an imLPH with a degree of hydrolysis of 29.71 ± 2.11%. The imLPH was mainly composed of protein (82.50 ± 0.88%) with a high content of glycine/glutamine, arginine, and aspartic acid/asparagine. The imLPH-treatment reduced the amount of abdominal white adipose tissue, total plasma cholesterol, LDL-C, and triglycerides, as well as the cardiovascular risk indexes (CRI) -I, CRI-II, and atherogenic index of plasma. The imLPH-treated mice also showed an increase in the plasma antioxidant capacity. For the first time, this study demonstrates the beneficial in vivo effect of a lupin protein hydrolysate obtained with the alcalase® immobilised and points out this approach as a possible cost-effective solution at the expensive generation of the hydrolysate through the traditional batch conditions with soluble enzymes.


Asunto(s)
Lupinus , Hidrolisados de Proteína , Animales , Ratones , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Antioxidantes/química , Lupinus/metabolismo , Subtilisinas/metabolismo , Endopeptidasas/metabolismo , Hidrólisis
4.
Mol Nutr Food Res ; 68(5): e2300503, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308501

RESUMEN

Oxidative stress plays a crucial role in neurodegenerative diseases like Parkinson's and Alzheimer's. Studies indicate the relationship between oxidative stress and the brain damage caused by a high-fat diet. It is previously found that a lupin protein hydrolysate (LPH) has antioxidant effects on human leukocytes, as well as on the plasma and liver of Western diet (WD)-fed ApoE-/- mice. Additionally, LPH shows anxiolytic effects in these mice. Given the connection between oxidative stress and anxiety, this study aimed to investigate the antioxidant effects of LPH on the brain of WD-fed ApoE-/- mice. LPH (100 mg kg-1) or a vehicle is administered daily for 12 weeks. Peptide analysis of LPH identified 101 amino acid sequences (36.33%) with antioxidant motifs. Treatment with LPH palliated the decrease in total antioxidant activity caused by WD ingestion and regulated the nitric oxide synthesis pathway in the brain of the animals. Furthermore, LPH increased cerebral glutathione levels and the activity of catalase and glutathione reductase antioxidant enzymes and reduced the 8-hydroxy-2'-deoxyguanosine levels, a DNA damage marker. These findings, for the first time, highlight the antioxidant activity of LPH in the brain. This hydrolysate could potentially be used in future nutraceutical therapies for neurodegenerative diseases.


Asunto(s)
Antioxidantes , Enfermedades Neurodegenerativas , Ratones , Humanos , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Hidrolisados de Proteína/farmacología , Dieta Occidental , Estrés Oxidativo , Encéfalo/metabolismo , Apolipoproteínas E/genética
5.
Food Chem ; 426: 136458, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37329795

RESUMEN

Dipeptidyl peptidase IV (DPP-IV) is considered a key target for the diabetes treatment, since it is involved in glucose metabolism. Although lupin protein consumption shown hypoglycemic activity, there is no evidence of its effect on DPP-IV activity. This study demonstrates that a lupin protein hydrolysate (LPH), obtained by hydrolysis with Alcalase, exerts anti-diabetic activity by modulating DPP-IV activity. In fact, LPH decreased DPP-IV activity in a cell-free and cell-based system. Contextually, Caco-2 cells were employed to identify LPH peptides that can be intestinally trans-epithelial transported. Notably, 141 different intestinally transported LPH sequences were identified using nano- and ultra-chromatography coupled to mass spectrometry. Hence, it was demonstrated that LPH modulated the glycemic response and the glucose concentration in mice, by inhibiting the DPP-IV. Finally, a beverage containing 1 g of LPH decreased DPP-IV activity and glucose levels in humans.


Asunto(s)
Diabetes Mellitus , Inhibidores de la Dipeptidil-Peptidasa IV , Lupinus , Humanos , Animales , Ratones , Lupinus/química , Células CACO-2 , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptidos/química , Dipeptidil Peptidasa 4/metabolismo , Glucosa
6.
Foods ; 12(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37238820

RESUMEN

In this research, scallops (Argopecten purpuratus) visceral meal (SVM) and defatted meal (SVMD) were analysed for their proximal composition, protein solubility, and amino acid profile. Hydrolysed proteins isolated from the scallop's viscera (SPH) were optimised and characterised using response surface methodology with a Box-Behnken design. The effects of three independent variables were examined: temperature (30-70 °C), time (40-80 min), and enzyme concentration (0.1-0.5 AU/g protein) on the degree of hydrolysis (DH %) as a response variable. The optimised protein hydrolysates were analysed for their proximal composition, yield, DH %, protein solubility, amino acid composition, and molecular profile. This research showed that defatted and isolation protein stages are not necessaries to obtain the hydrolysate protein. The conditions of the optimization process were 57 °C, 62 min and 0.38 AU/g protein. The amino acid composition showed a balanced profile since it conforms to the Food and Agriculture Organisation/World Health Organisation recommendations for healthy nutrition. The predominant amino acids were aspartic acid + asparagine, glutamic acid + Glutamate, Glycine, and Arginine. The protein hydrolysates' yield and DH % were higher than 90% and close to 20%, respectively, with molecular weight between 1-5 kDa. The results indicate that the protein hydrolysates of scallops (Argopecten purpuratus) visceral by product optimised and characterised was suitable a lab-scale. Further research is necessary to study the bioactivity properties with biologic activity of these hydrolysates.

7.
Foods ; 12(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36981078

RESUMEN

Vegetarian foods are plant-based (PB) foods, often perceived as healthier foods than animal-based (AB) foods. The objective of this study was to analyze the nutritional quality of a set of PB foods (meat, milk and dairy products) marketed in Spain, and to compare their nutrient profiles with respect to some AB counterparts. Nutritional information per 100 g or mL, ingredients, and nutritional declarations, as well as the Nutri-Score, NOVA, and Eco-Score of each food were collected from Open Food Facts. Differences in the nutrient compositions between PB foods and their counterparts, and between the different groups of PB foods, were assessed at a 5% significance level. A total of 544 PB foods and 373 AB foods were identified. Overall, PB foods had a higher median content of fiber and carbohydrates, but a lower amount of proteins (except PB "meat" analogues: 14 g) and saturated fats (except PB "cheese alternatives": 12.5 g), than the AB counterparts (p < 0.05). PB "milk alternatives", particularly oat "milk", showed a higher median content of total carbohydrates (8 g) and sugars (5.5 g) compared to cow milks (4.7 g carbohydrates/sugars, on average; p < 0.001). PB "meat alternatives" also had a significantly higher value of carbohydrates (9 g) than AB meats (2 g, on average; p < 0.001). PB foods were mostly classified as Nutri-Score A and B (86%). However, more than half of them were of NOVA groups 3 and 4. Thus, there is a great diversity of PB meat and milk/dairy product alternatives on the Spanish market. Despite being products of good nutritional quality compared to AB foods, they also carry drawbacks that could have an impact on nutritional health.

8.
Sci Total Environ ; 869: 161806, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36707001

RESUMEN

There is growing interest in the consumption of halophytes due to their excellent nutritional profile and antioxidant properties, and their cultivation offers viable alternatives in the face of irreversible global salinization of soils. Nevertheless, abiotic factors strongly influence their phytochemical composition, and little is known about how growing conditions can produce plants with the best nutritional and functional properties. Crithmum maritimum is an edible halophyte with antioxidant properties and considerable potential for sustainable agriculture in marginal environments. However, it is found naturally in contrasting habitats with variable soil physicochemical properties and the extent to which edaphic factors can influence plant performance, accumulation of phytochemicals and their quality remains unknown. We investigated the influence of soil physicochemical properties (texture, pH, electrical conductivity, organic matter content and mineral element concentrations) on growth and reproductive performance, nutritional traits, and the accumulation of specific metabolites in C. maritimum. Soil, leaf and seed samples were taken from eight C. maritimum populations located on the southern coasts of Spain and Portugal. We found greater vegetative growth and seed production in coarser, sandier soils with lower microelement concentrations. The nutritional traits of leaves varied, with soil organic matter and macronutrient content associated with reduced leaf Na, protein and phenolic (mainly flavonoid) concentrations, whereas soils with lower pH and Fe concentrations, and higher clay content yielded plants with lower leaf Zn concentration and greater accumulation of hydroxycinnamic acids. The nutritional value of the seed oil composition appeared to be enhanced in soils with coarser texture and lower microelement concentrations. The accumulation of specific phenolic compounds in the seed was influenced by a wide range of soil properties including texture, pH and some microelements. These findings will inform the commercial cultivation of C. maritimum, particularly in the economic exploitation of poorly utilized, saline soils.


Asunto(s)
Antioxidantes , Suelo , Antioxidantes/metabolismo , Suelo/química , Plantas Tolerantes a la Sal/metabolismo , Agricultura , Fenoles , Fitoquímicos
9.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077225

RESUMEN

Anxiety is the most prevalent psychiatric disorder worldwide, causing a substantial economic burden due to the associated healthcare costs. Given that commercial anxiolytic treatments may cause important side effects and have medical restrictions for prescription and high costs, the search for new natural and safer treatments is gaining attention. Since lupin protein hydrolysate (LPH) has been shown to be safe and exert anti-inflammatory and antioxidant effects, key risk factors for the anxiety process and memory impairment, we evaluated in this study the potential effects of LPH on anxiety and spatial memory in a Western diet (WD)-induced anxiety model in ApoE-/- mice. We showed that 20.86% of the 278 identified LPH peptides have biological activity related to anxiolytic/analgesic effects; the principal motifs found were the following: VPL, PGP, YL, and GQ. Moreover, 14 weeks of intragastrical LPH treatment (100 mg/kg) restored the WD-induced anxiety effects, reestablishing the anxiety levels observed in the standard diet (SD)-fed mice since they spent less time in the anxiety zones of the elevated plus maze (EPM). Furthermore, a significant increase in the number of head dips was recorded in LPH-treated mice, which indicates a greater exploration capacity and less fear due to lower levels of anxiety. Interestingly, the LPH group showed similar thigmotaxis, a well-established indicator of animal anxiety and fear, to the SD group, counteracting the WD effect. This is the first study to show that LPH treatment has anxiolytic effects, pointing to LPH as a potential component of future nutritional therapies in patients with anxiety.


Asunto(s)
Ansiolíticos , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Apolipoproteínas E/genética , Apolipoproteínas E/farmacología , Conducta Animal , Dieta Occidental/efectos adversos , Humanos , Aprendizaje por Laberinto , Ratones , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/uso terapéutico
10.
J Agric Food Chem ; 70(27): 8243-8253, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35767743

RESUMEN

We have previously reported the in vitro hypocholesterolemic, anti-inflammatory, and antioxidant effects of Alcalase-generated lupin protein hydrolysate (LPH). Given that lipoprotein deposition, oxidative stress, and inflammation are the main components of atherogenesis, we characterized the LPH composition, in silico identified LPH-peptides with activities related to atherosclerosis, and evaluated the in vivo LPH effects on atherosclerosis risk factors in a mouse model of atherosclerosis. After 15 min of Alcalase hydrolysis, peptides smaller than 8 kDa were obtained, and 259 peptides out of 278 peptides found showed biological activities related to atherosclerosis risk factors. Furthermore, LPH administration for 12 weeks reduced the plasma lipids, as well as the cardiovascular and atherogenic risk indexes. LPH also increased the total antioxidant capacity, decreased endothelial permeability, inflammatory response, and atherogenic markers. Therefore, this study describes for the first time that LPH prevents the early stages of atherosclerosis.


Asunto(s)
Aterosclerosis , Lupinus , Animales , Antioxidantes , Apolipoproteínas E/genética , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/prevención & control , Dieta Occidental , Lupinus/química , Ratones , Péptidos , Hidrolisados de Proteína/farmacología , Subtilisinas
11.
Food Funct ; 13(7): 4158-4170, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35316320

RESUMEN

Lupin protein hydrolysates (LPHs) are gaining attention in the food and nutraceutical industries due to their several beneficial health effects. Recently, we have shown that LPH treatment reduces liver cholesterol and triglyceride levels in hypercholesterolemic mice. The aim of this study was to elucidate the effects of LPH treatment on the molecular mechanism underlying liver cholesterol metabolism in ApoE-/- mice fed the Western diet. After identifying the composition of the peptide within the LPH mixture and determining its ability to reduce HMGCoAR activity in vitro, its effect on the LDLR and PCSK9 pathways was measured in liver tissue from the same mice. Thus, the LPH reduced the protein levels of HMGCoAR and increased the phosphorylated inactive form of HMGCoAR and the pHMGCoAR/HMGCoAR ratio, which led to the deactivation of de novo cholesterol synthesis. Furthermore, the LPH decreased the protein levels of SREBP2, a key upstream transcription factor involved in the expression of HMGCoAR and LDLR. Consequently, LDLR protein levels decreased in the liver of LPH-treated animals. Interestingly, the LPH also increased the protein levels of pAMPK responsible for HMGCoAR phosphorylation. Furthermore, the LPH controlled the PSCK9 signal pathway by decreasing its transcription factor, the HNF1-α protein. Consequently, lower PSCK9 protein levels were found in the liver of LPH-treated mice. This is the first study elucidating the molecular mechanism at the basis of the hypocholesterolemic effects exerted by the LPH in an in vivo model. All these findings point out LPHs as a future lipid-lowering ingredient to develop new functional foods.


Asunto(s)
Lupinus , Proproteína Convertasa 9 , Animales , Apolipoproteínas E/genética , Dieta Occidental/efectos adversos , Hígado/metabolismo , Lupinus/metabolismo , Ratones , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Hidrolisados de Proteína/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
12.
Foods ; 11(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35267256

RESUMEN

Chia (Salvia hispanica L.) seed has high potential in the development of functional food due to its protein content with a special amino acid profile. Among the hematopoietic-derived cells, monocytes are endowed with high plasticity, responsible for their pro- and anti-inflammatory function in M1 and M2 phenotype polarization, respectively. Indeed, monocytes are involved in several oxidative- and inflammatory-associated disorders such as cancer, obesity, and cardiovascular and neurodegenerative diseases. This study was designed to investigate the role of chia protein hydrolysates (CPHs) in primary human monocyte-macrophage plasticity response using biochemical, RT-qPCR, and ELISA assays. Our results showed that CPHs reduce ROS and nitrite output, as pro-inflammatory cytokine secretion, and enhance the expression and release of anti-inflammatory cytokines. In addition, CPHs reverse LPS-associated M1 polarization into M2. These findings open new opportunities for developing nutritional strategies with chia as a dietary source of biopeptides to prevent the development and progression of oxidative- and inflammatory-related diseases.

13.
Nutr Neurosci ; 25(3): 472-484, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32401697

RESUMEN

OBJECTIVES: Neuroinflammation is a complex inflammatory process in the central nervous system (CNS) where microglia may play a critical role. GPETAFLR is a peptide isolated from Lupinus angustifolius L. protein hydrolysates with functional activity in mononuclear phagocytes. However, it is unknown whether GPETAFLR has neuroprotective effects. METHODS: We analysed the potential anti-neuroinflammatory activity of GPETAFLR by using two different models of neuroinflammation: BV-2 microglial cells and mice with high-fat diet (HFD)-induced obesity. RESULTS: GPETAFLR hampered LPS-induced upregulation of pro-inflammatory and M1 marker genes in BV-2 cells. This effect was accompanied by an unchanged expression of anti-inflammatory IL-10 gene and by an increased expression of M2 marker genes. GPETAFLR also increased the transcriptional activity of M2 marker genes, while the microglia population remained unchanged in number and M1/M2 status in brain of mice with high-fat diet (HFD)-induced obesity. Furthermore, GPETAFLR counteracted HFD-induced downregulation of IL-10 and upregulation of pro-inflammatory markers in the mouse brain, both at gene and protein levels. DISCUSSION: This is the first report describing that a peptide from plant origin robustly restrained the pro-inflammatory activation of microglial cells in cultures and in brain. Our data suggest that GPETAFLR might be instrumental in maintaining CNS homeostasis by inhibiting neuroinflammation.


Asunto(s)
Lupinus , Microglía , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Inflamación/inducido químicamente , Lipopolisacáridos/farmacología , Lupinus/metabolismo , Ratones , Neuroprotección , Péptidos
14.
Biomolecules ; 11(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34680091

RESUMEN

Agri-food industries generate several by-products, including protein-rich materials currently treated as waste. Lupine species could be a sustainable alternative source of protein compared to other crops such as soybean or chickpea. Protein hydrolysates contain bioactive peptides that may act positively in disease prevention or treatment. Inflammatory responses and oxidative stress underlie many chronic pathologies and natural treatment approaches have gained attention as an alternative to synthetic pharmaceuticals. Recent studies have shown that lupin protein hydrolysates (LPHs) could be an important source of biopeptides, especially since they demonstrate anti-inflammatory properties. However, due to their possible degradation by digestive and brush-border enzymes, it is not clear whether these peptides can resist intestinal absorption and reach the bloodstream, where they may exert their biological effects. In this work, the in vitro cellular uptake/transport and the anti-inflammatory and antioxidant properties of LPH were investigated in a co-culture system with intestinal epithelial Caco-2 cells and THP-1-derived macrophages. The results indicate that the LPH crosses the human intestinal Caco-2 monolayer and exerts anti-inflammatory activity in macrophages located in the basement area by decreasing mRNA levels and the production of pro-inflammatory cytokines. A remarkable reduction in nitric oxide and ROS in the cell-based system by peptides from LPH was also demonstrated. Our preliminary results point to underexplored protein hydrolysates from food production industries as a novel, natural source of high-value-added biopeptides.


Asunto(s)
Antiinflamatorios/química , Lupinus/química , Hidrolisados de Proteína/química , Residuos Sólidos , Agricultura , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Células CACO-2 , Humanos , Estrés Oxidativo , Hidrolisados de Proteína/farmacología
15.
Foods ; 10(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34681347

RESUMEN

Twelve high-quality chia protein hydrolysates (CPHs) were produced from chia protein isolate (CPI) in a pilot plant of vegetable proteins. To obtain functional hydrolysate, four CPHs were hydrolyzed by the action of Alcalase, an endoprotease, and the other eight CPHs were hydrolyzed by the action of Flavourzyme, an exoprotease. Alcalase-obtained CPHs showed significant antihypertensive properties particularly, the CPH obtained after 15 min of hydrolysis with Alcalase (CPH15A), which showed a 36.2% hydrolysis degree. In addition, CPH15A increased the antioxidant capacity compared to CPI. The CPH15A physicochemical composition was characterized and compared to chia defatted flour (CDF) and CPI, and its techno-functional properties were determined by in vitro experiments through the analysis of its oil absorption capacity, as well as the capacity and stability of foaming and emulsifying, resulting in an emulsifier and stabilizer better than the intact protein. Therefore, the present study revealed that CPH15A has potent antihypertensive and antioxidant properties and can constitute an effective alternative to other plant protein ingredients sources that are being used in the food industry.

16.
Antioxidants (Basel) ; 10(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34439470

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) is the most important cause of liver disease worldwide. It is characterized by the accumulation of fat in the liver and is closely associated with abdominal obesity. In addition, oxidative stress and inflammation are significant features involved in MAFLD. Recently, our group demonstrated that lupin protein hydrolysates (LPHs) had lipid lowering, antioxidant, and anti-inflammatory effects. Sixty male mice fed with a Western diet were intragastrically treated with LPHs (or vehicle) for 12 weeks. Liver and adipose tissue lipid accumulation and hepatic inflammatory and oxidant status were evaluated. A significant decrease in steatosis was observed in LPHs-treated mice, which presented a decreased gene expression of CD36 and LDL-R, crucial markers in MAFLD. In addition, LPHs increased the hepatic total antioxidant capacity and reduced the hepatic inflammatory status. Moreover, LPHs-treated mice showed a significant reduction in abdominal adiposity. This is the first study to show that the supplementation with LPHs markedly ameliorates the generation of the steatotic liver caused by the intake of a Western diet and reduces abdominal obesity in ApoE-/- mice. Future clinical trials should shed light on the effects of LPHs on MAFLD.

17.
Mol Nutr Food Res ; 65(14): e2100139, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34015184

RESUMEN

SCOPE: We have previously demonstrated the anti-inflammatory and antioxidant properties of in vitro administered Lupinus angustifolius protein hydrolysates (LPHs) on human peripheral blood mononuclear cells (PBMCs). This study aims to evaluate the safety and efficacy of a beverage containing LPHs (LPHb) on the immune, oxidative and metabolic status of healthy subjects. METHODS AND RESULTS: In this open-label intervention, 33 participants daily ingest a LPHb containing 1 g LPHs for 28 days. Biochemical parameters are assayed in fasting peripheral blood and urine samples before, during (14 days) and after LPHb ingestion. Participants' health status and the immune and antioxidant responses of PBMCs are also evaluated throughout the trial. The LPHb ingestion is safe and effective in both increasing the anti-/pro-inflammatory response of PBMCs and improving the cellular anti-oxidant capacity. LPHb also reduces the low-density lipoprotein-cholesterol (LDL-C)/high-density lipoprotein-cholesterol (HDL-C) atherogenic index. LPHb effect is particularly beneficial on decreasing not only the LDL-C/HDL-C index but also serum total cholesterol levels in the male cohort that shows the highest baseline levels of well-known cardiovascular risk factors. CONCLUSION: This is the first study to show the pleiotropic actions of a lupine bioactive peptides-based functional food on key steps of atherosclerosis including inflammation, oxidative stress, and cholesterol metabolism.


Asunto(s)
Bebidas , Lípidos , Lupinus/química , Estrés Oxidativo , Hidrolisados de Proteína/farmacología , Adulto , Antioxidantes/metabolismo , Biomarcadores/sangre , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Citocinas/metabolismo , Femenino , Voluntarios Sanos , Humanos , Inflamación , Riñón , Leucocitos Mononucleares/efectos de los fármacos , Lípidos/sangre , Hígado , Estudios Longitudinales , Masculino , Estrés Oxidativo/efectos de los fármacos
18.
Front Plant Sci ; 12: 649132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054895

RESUMEN

Chenopodium quinoa Willd (quinoa) has acquired an increased agronomical and nutritional relevance due to the capacity of adaptation to different environments and the exceptional nutritional properties of their seeds. These include high mineral and protein contents, a balanced amino acid composition, an elevated antioxidant capacity related to the high phenol content, and the absence of gluten. Although it is known that these properties can be determined by the environment, limited efforts have been made to determine the exact changes occurring at a nutritional level under changing environmental conditions in this crop. To shed light on this, this study aimed at characterizing variations in nutritional-related parameters associated with the year of cultivation and different genotypes. Various nutritional and physiological traits were analyzed in seeds of different quinoa cultivars grown in the field during three consecutive years. We found differences among cultivars for most of the nutritional parameters analyzed. It was observed that the year of cultivation was a determinant factor in every parameter studied, being 2018 the year with lower yields, germination rates, and antioxidant capacity, but higher seed weights and seed protein contents. Overall, this work will greatly contribute to increase our knowledge of the impact of the environment and genotype on the nutritional properties of quinoa seeds, especially in areas that share climatic conditions to Southern Europe.

19.
Appl Biochem Biotechnol ; 193(9): 2843-2857, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34019251

RESUMEN

Tris is an extensively used buffer that presents a primary amine group on its structure. In the present work trypsin, chymotrypsin and penicillin G acylase (PGA) were immobilized/stabilized on glyoxyl agarose in presence of different concentrations of Tris (from 0 to 20 mM). The effects of the presence of Tris during immobilization were studied analyzing the thermal stability of the obtained immobilized biocatalysts. The results indicate a reduction of the enzyme stability when immobilized in the presence of Tris. This effect can be observed in inactivations carried out at pH 5, 7, and 9 with all the enzymes assayed. The reduction of enzyme stability increased with the Tris concentration. Another interesting result is that the stability reduction was more noticeable for immobilized PGA than in the other immobilized enzymes, the biocatalysts prepared in presence of 20 mM Tris lost totally the activity at pH 7 just after 1 h of inactivation, while the reference at this time still kept around 61 % of the residual activity. These differences are most likely due to the homogeneous distribution of the Lys groups in PGA compared to trypsin and chymotrypsin (where almost 50% of Lys group are in a small percentage of the protein surface). The results suggest that Tris could be affecting the multipoint covalent immobilization in two different ways, on one hand, reducing the number of available glyoxyl groups of the support during immobilization, and on the other hand, generating some steric hindrances that difficult the formation of covalent bonds.


Asunto(s)
Enzimas Inmovilizadas/química , Glioxilatos/química , Penicilina Amidasa/química , Sefarosa/química , Trometamina/química , Tripsina/química , Tampones (Química) , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno
20.
Antioxidants (Basel) ; 10(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922174

RESUMEN

Kiwicha (Amaranthus caudatus) is considered one of the few multipurpose pseudocereals for its potential use not only as a source of nutrients and fiber but also for its bioactive compounds. In recent years, antioxidant peptides are commonly used as functional ingredient of food. Herein, a kiwicha protein isolate (KPI), obtained from kiwicha defatted flour (KDF), was hydrolyzed by Bioprotease LA 660, a food-grade endoprotease, under specific conditions. The resulting kiwicha protein hydrolysates (KPHs) were chemically characterized and their digestibility and antioxidant capacity were evaluated by in vitro cell-free experiments owing to their measure of capacity to sequester DPPH free radical and reducing power. KPHs showed higher digestibility and antioxidant capacity than intact proteins into KPI. Therefore, the results shown in this study indicate that KPHs could serve as an adequate source of antioxidant peptides, representing an effective alternative to the generation of functional food.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...