Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 30(23): 2315-2331, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34245265

RESUMEN

Glioblastoma (GB) is the most aggressive and common form of primary brain tumor characterized by fast proliferation, high invasion and resistance to current standard treatment. The average survival rate post-diagnosis is 14.6 months, despite the aggressive standard post-surgery radiotherapy concomitant with chemotherapy with temozolomide (TMZ). Currently, efforts are being endowed to develop new and more efficient therapeutic approaches capable to overcome chemoresistance, inhibit tumor progression and improve overall patient survival rate. Abnormal microRNA (miRNA) expression has been correlated with chemoresistance, proliferation and resistance to apoptosis, which result from their master regulatory role of gene expression. Altered cell metabolism, favoring glycolysis, was identified as an emerging cancer hallmark and has been described in GB, thus offering a new target for innovative GB therapies. In this work, we hypothesized that a gene therapy-based strategy consisting of the overexpression of a miRNA downregulated in GB and predicted to target crucial metabolic enzymes might promote a shift of GB cell metabolism, decreasing the glycolytic dependence of tumor cells and contributing to their sensitization to chemotherapy with TMZ. The increase of miR-200c levels in DBTRG cells resulted in downregulation of messenger RNA of enzymes involved in bioenergetics pathways and impaired cell metabolism and mobility. In addition, miR-200c overexpression prior to DBTRG cell exposure to TMZ resulted in cell cycle arrest. Overall, our results show that miR-200c overexpression could offer a way to overcome chemoresistance developed by GB cells in response to current standard chemotherapy, providing an improvement to current GB standard treatment, with benefit for patient outcome.


Asunto(s)
Resistencia a Antineoplásicos/genética , Metabolismo Energético , Glioblastoma/genética , Glioblastoma/metabolismo , MicroARNs/genética , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Interferencia de ARN , ARN Mensajero
2.
Environ Pollut ; 286: 117239, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33990048

RESUMEN

Several environmental pollutants, including pesticides, herbicides and persistent organic pollutants play an important role in the development of chronic diseases. However, most studies have examined environmental pollutants toxicity in target organisms or using a specific toxicological test, losing the real effect throughout the ecosystem. In this sense an integrative environmental risk of pollutants assessment, using different model organisms is necessary to predict the real impact in the ecosystem and implications for target and non-target organisms. The objective of this study was to use alachlor, a chloroacetanilide herbicide responsible for chronic toxicity, to understand its impact in target and non-target organisms and at different levels of biological organization by using several model organisms, including membranes of dipalmitoylphosphatidylcholine (DPPC), rat liver mitochondria, bacterial (Bacillus stearothermophilus), plant (Lemna gibba) and mammalian cell lines (HeLa and neuro2a). Our results demonstrated that alachlor strongly interacted with membranes of DPPC and interfered with mitochondrial bioenergetics by reducing the respiratory control ratio and the transmembrane potential. Moreover, alachlor also decreased the growth of B. stearothermophilus and its respiratory activity, as well as decreased the viability of both mammalian cell lines. The values of TC50 increased in the following order: Lemna gibba < neuro2a < HeLa cells < Bacillus stearothermophilus. Together, the results suggest that biological membranes constitute a putative target for the toxic action of this lipophilic herbicide and point out the risks of its dissemination on environment, compromising ecosystem equilibrium and human health.


Asunto(s)
Contaminantes Ambientales , Herbicidas , Contaminantes Químicos del Agua , Acetamidas , Animales , Ecosistema , Contaminantes Ambientales/toxicidad , Células HeLa , Herbicidas/toxicidad , Humanos , Ratas , Medición de Riesgo
3.
Hum Mol Genet ; 30(3-4): 160-171, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33438013

RESUMEN

Despite the intense global efforts towards an effective treatment of glioblastoma (GB), current therapeutic options are unsatisfactory with a median survival time of 12-15 months after diagnosis, which has not improved significantly over more than a decade. The high tumoral heterogeneity confers resistance to therapies, which has hindered a successful clinical outcome, GB remaining among the deadliest cancers. A hallmark of GB is its high recurrence rate, which has been attributed to the presence of a small subpopulation of tumor cells called GB stem-like cells (GSC). In the present work, the efficacy of a multimodal strategy combining microRNA (miRNA) modulation with new generation multitargeted tyrosine kinase inhibitors (imatinib and axitinib) was investigated aiming at tackling this subpopulation of GB cells. MiR-128 and miR-302a were selected as attractive therapeutic candidates on the basis of previous findings reporting that reestablishment of their decreased expression levels in GSC resulted in cell differentiation, which could represent a possible strategy to sensitize GSC to chemotherapy. Our results show that overexpression of miR-128 or miR-302a induced GSC differentiation, which enhanced senescence mediated by axitinib treatment, thus further impairing GSC proliferation. We also provided evidence for the capacity of GSC to efficiently internalize functionalized stable nucleic acid lipid particles, previously developed and successfully applied in our laboratory to target GB. Taken together, our findings will be important in the future design of a GB-targeted multimodal miRNA-based gene therapy, combining overexpression of miR-128 or miR-302a with axitinib treatment, endowed with the ability to overcome drug resistance.


Asunto(s)
Axitinib/uso terapéutico , Diferenciación Celular , Glioblastoma/tratamiento farmacológico , MicroARNs/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Axitinib/farmacología , Línea Celular Tumoral , Terapia Combinada , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/fisiopatología , Humanos , Mesilato de Imatinib/farmacología , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Regulación hacia Arriba
4.
Hum Mol Genet ; 30(1): 46-64, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33438023

RESUMEN

Glioblastoma (GB) is the most frequent and malignant type of brain tumor, for which no effective therapy exists. The high proliferative and invasive nature of GB, as well as its acquired resistance to chemotherapy, makes this type of cancer extremely lethal shortly after diagnosis. Long non-protein coding RNAs (lncRNA) are a class of regulatory RNAs whose levels can be dysregulated in the context of diseases, unbalancing several physiological processes. The lncRNA associated with microvascular invasion in hepatocellular carcinoma (lncRNA-MVIH), overexpressed in several cancers, was described to co-precipitate with phosphoglycerate kinase 1 (PGK1), preventing secretion of this enzyme to the extracellular environment and promoting cell migration and invasion. We hypothesized that, by silencing the expression of lncRNA-MVIH, the secretion of PGK1 would increase, reducing GB cell migration and invasion capabilities. We observed that lncRNA-MVIH silencing in human GB cells significantly decreased glycolysis, cell growth, migration, and invasion and sensitized GB cells to cediranib. However, no increase in extracellular PGK1 was observed as a consequence of lncRNA-MVIH silencing, and therefore, we investigated the possibility of a mechanism of miRNA sponge of lncRNA-MVIH being in place. We found that the levels of miR-302a loaded onto RISC increased in GB cells after lncRNA-MVIH silencing, with the consequent downregulation of several miR-302a molecular targets. Our findings suggest a new mechanism of action of lncRNA-MVIH as a sponge of miR-302a. We suggest that lncRNA-MVIH knockdown may be a promising strategy to address GB invasiveness and chemoresistance, holding potential towards its future application in a clinical context.


Asunto(s)
Glioblastoma/genética , MicroARNs/genética , Fosfoglicerato Quinasa/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/patología , Humanos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología
5.
Pharm Res ; 37(10): 188, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32888084

RESUMEN

PURPOSE: This study aimed to endow the cell-penetrating peptide (CPP) S413-PV with adequate features towards a safe and effective application in cancer gene therapy. METHODS: Peptide/siRNA complexes were prepared with two new derivatives of the CPP S413-PV, which combine a lauroyl group attached to the N- or C-terminus with a histidine-enrichment in the N-terminus of the S413-PV peptide, being named C12-H5-S413-PV and H5-S413-PV-C12, respectively. Physicochemical characterization of siRNA complexes was performed and their cytotoxicity and efficiency to mediate siRNA delivery and gene silencing in cancer cells were assessed in the absence and presence of serum. RESULTS: Peptide/siRNA complexes prepared with the C12-H5-S413-PV derivative showed a nanoscale (ca. 100 nm) particle size, as revealed by TEM, and efficiently mediated gene silencing (37%) in human U87 glioblastoma cells in the presence of 30% serum. In addition, the new C12-H5-S413-PV-based siRNA delivery system efficiently downregulated stearoyl-CoA desaturase-1, a key-enzyme of lipid metabolism overexpressed in cancer, which resulted in a significant decrease in the viability of U87 cells. Importantly, these complexes were able to spare healthy human astrocytes. CONCLUSIONS: These encouraging results pave the way for a potential application of the C12-H5-S413-PV peptide as a promising tool in cancer gene therapy.


Asunto(s)
Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Silenciador del Gen , Terapia Genética/métodos , Histidina/química , Ácidos Láuricos/química , Neoplasias/genética , Neoplasias/terapia , Péptidos/química , Péptidos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Humanos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/uso terapéutico , Estearoil-CoA Desaturasa/antagonistas & inhibidores
6.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785133

RESUMEN

More than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. Also under study is the possibility to block substrate accumulation upstream, by promoting a decrease of its synthesis. This concept is known as substrate reduction therapy and may be triggered by several molecules, such as small interfering RNAs (siRNAs). siRNAs promote RNA interference, a naturally occurring sequence-specific post-transcriptional gene-silencing mechanism, and may target virtually any gene of interest, inhibiting its expression. Still, naked siRNAs have limited cellular uptake, low biological stability, and unfavorable pharmacokinetics. Thus, their translation into clinics requires proper delivery methods. One promising platform is a special class of liposomes called stable nucleic acid lipid particles (SNALPs), which are characterized by high cargo encapsulation efficiency and may be engineered to promote targeted delivery to specific receptors. Here, we review the concept of SNALPs, presenting a series of examples on their efficacy as siRNA nanodelivery systems. By doing so, we hope to unveil the therapeutic potential of these nanosystems for targeted brain delivery of siRNAs in LSDs.


Asunto(s)
Enfermedades del Sistema Nervioso Central/complicaciones , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Liposomas/química , Enfermedades por Almacenamiento Lisosomal/complicaciones , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , Animales , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/metabolismo , Estabilidad de Medicamentos , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo
7.
Hum Mol Genet ; 28(21): 3664-3679, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518391

RESUMEN

A great deal of evidence revealing that lipid metabolism is drastically altered during tumorigenesis has been accumulated. In this work, glucosylceramide synthase (GCS) was targeted, using RNA interference technology (siRNAs), in U87 and DBTRG human glioblastoma (GBM) cells, as in both cell types GCS showed to be overexpressed with respect to normal human astrocytes. The efficacy of a combined therapy to tackle GBM, allying GCS silencing to the new generation chemotherapeutics sunitinib and axitinib, or to the alkylating drugs etoposide and temozolomide, is evaluated here for the first time. With this purpose, studies addressing GBM cell viability and proliferation, cell cycle and apoptosis were performed, which revealed that combination of GCS silencing with axitinib treatment represents a promising therapeutic approach. The reduction of cell viability induced by this combined therapy is proposed to be mediated by excessive production of reactive oxygen species. This work, identifying GCS as a key molecular target to increase GBM susceptibility to a new generation chemotherapeutic, opens windows to the development of innovative strategies to halt GBM recurrence after surgical resection.


Asunto(s)
Axitinib/farmacología , Glioblastoma/genética , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/genética , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/fisiopatología , Glucosiltransferasas/metabolismo , Humanos , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo
8.
Methods Mol Biol ; 1895: 43-55, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30539528

RESUMEN

Suicide gene therapy has been tested for the treatment of a variety of cancers, including oral cancer. Among the various suicide gene therapy approaches that have been reported, the Herpes Simplex Virus thymidine kinase (HSV-tk)/ganciclovir (GCV) system is one of the most extensively studied systems, holding great promise in cancer therapy. In this chapter, we describe methods to use the HSV-tk/GCV system to achieve antitumor activity, both in cultured oral cancer cells and in orthotopic and subcutaneous murine models of oral squamous cell carcinoma, using ligand-associated lipoplexes for enhancing therapeutic delivery.


Asunto(s)
Carcinoma de Células Escamosas/terapia , Ganciclovir/uso terapéutico , Genes Transgénicos Suicidas , Terapia Genética/métodos , Liposomas , Neoplasias de la Boca/terapia , Timidina Quinasa/metabolismo , Animales , Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Ganciclovir/metabolismo , Humanos , Ratones , Profármacos/metabolismo , Profármacos/uso terapéutico , Simplexvirus/enzimología , Células Tumorales Cultivadas , Proteínas Virales/metabolismo
9.
Biochim Biophys Acta Biomembr ; 1860(12): 2619-2634, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30291923

RESUMEN

BACKGROUND: Cell-penetrating peptides (CPPs) have been extensively exploited in gene therapy approaches as vectors for intracellular delivery of bioactive molecules. The ability of CPPs to be internalized into cells and their capacity to complex nucleic acids depend on their molecular structure, both primary and secondary, namely regarding hydrophobicity/hydrophilicity. CPP acylation has been used as a strategy to improve this structural feature. METHODS: Acyl groups (from 6 to 18 carbon atoms) were attached to the S413-PV peptide and their effects on the peptide competence to complex siRNAs and to mediate gene silencing in glioblastoma (GBM) cells were studied. A systematic characterization of membrane interactions with S413-PV acyl-derivatives was also conducted, using different biophysical techniques (surface pressure-area isotherms in Langmuir monolayers, DSC and 31P NMR) to unravel a relationship between CPP biological activity and CPP effects on membrane stability and lipid organization. RESULTS: A remarkable concordance was noticed between acylated-S413-PV peptide competence to promote gene silencing in GBM cells and disturbance induced in membrane models, the lauroyl- and myristoyl-S413-PV peptides being the most effective. A cut-off effect was described for the first time regarding the influence of acyl-chain length on CPP bioactivity. CONCLUSIONS: C12-S413-PV showed high capacity to destabilize lipid bilayers, to escape from lysosomal degradation and to mediate gene silencing without promoting cytotoxicity. GENERAL SIGNIFICANCE: Besides unraveling a new CPP with high potential to be employed as a gene delivery vector, this work emphasizes the benefit from allying biophysical and biological studies towards a proper CPP structural refinement for successful pre-clinical/clinical application.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Metabolismo de los Lípidos , Ácidos Nucleicos/administración & dosificación , Péptidos/metabolismo , Acilación , Línea Celular Tumoral , Humanos , Membrana Dobles de Lípidos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Ácidos Nucleicos/metabolismo , Transfección
10.
Biochim Biophys Acta Gen Subj ; 1862(12): 2788-2796, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30251667

RESUMEN

BACKGROUND: Site-specific multimodal nanoplatforms with fluorescent-magnetic properties have great potential for biological sciences. For this reason, we developed a multimodal nanoprobe (BNPs-Tf), by covalently conjugating an optical-magnetically active bimodal nanosystem, based on quantum dots and iron oxide nanoparticles, with the human holo-transferrin (Tf). METHODS: The Tf bioconjugation efficiency was evaluated by the fluorescence microplate assay (FMA) and the amount of Tf immobilized on BNPs was quantified by fluorescence spectroscopy. Moreover, relaxometric and fluorescent properties of the BNPs-Tf were evaluated, as well as its ability to label specifically HeLa cells. Cytotoxicity was also performed by Alamar Blue assay. RESULTS: The FMA confirmed an efficient bioconjugation and the fluorescence spectroscopy analysis indicated that 98% of Tf was immobilized on BNPs. BNPs-Tf also presented a bright fluorescence and a transversal/longitudinal relaxivities ratio (r2/r1) of 65. Importantly, the developed BNPs-Tf were able to label, efficiently and specifically, the Tf receptors in HeLa cells, as shown by fluorescence and magnetic resonance imaging assays. Moreover, this multimodal system did not cause noteworthy cytotoxicity. CONCLUSIONS: The prepared BNPs-Tf hold great promise as an effective and specific multimodal, highly fluorescent-magnetic, nanoplatform for fluorescence analyses and T2-weighted images. GENERAL SIGNIFICANCE: This study developed an attractive and versatile multimodal nanoplatform that has potential to be applied in a variety of in vitro and in vivo studies, addressing biological processes, diagnostic, and therapeutics. Moreover, this work opens new possibilities for designing other efficient multimodal nanosystems, considering other biomolecules in their composition able to provide them important functional properties.


Asunto(s)
Colorantes Fluorescentes/química , Magnetismo , Nanopartículas/química , Receptores de Transferrina/metabolismo , Citometría de Flujo , Células HeLa , Humanos , Imagen por Resonancia Magnética , Puntos Cuánticos , Espectrometría de Fluorescencia , Transferrina/química
11.
Hum Mol Genet ; 26(22): 4375-4387, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28973155

RESUMEN

Glioblastoma (GBM) is a deadly and therapy resistant malignant brain tumour, characterized by an aggressive and diffuse growth pattern, which prevents complete surgical resection. Despite advances in the identification of genomic and molecular alterations that fuel the tumour, average patient survival post-diagnosis remains very low (∼14.6-months). In addition to being highly heterogeneous, GBM tumour cells exhibit high adaptive capacity to targeted molecular therapies owing to an established network of signalling cascades with functional redundancy, which provides them with robust compensatory survival mechanisms. Here, we investigated whether a multimodal strategy combining multitargeted tyrosine kinase inhibitors (MTKIs) and microRNA (miRNA) modulation could overcome the signalling pathway redundancy in GBM and, hence, promote tumour cell death. By performing a high-throughput screening, we identified a myriad of miRNAs, including those belonging to the miR-302-3p/372-3p/373-3p/520-3p family, which coordinately act with the MTKI sunitinib to decrease GBM cell viability. Two members of this family, hsa-miRNA-302a-3p and hsa-miRNA-520 b, were found to modulate the expression of receptor tyrosine kinase mediators (including AKT1, PIK3CA and SOS1) in U87 and DBTRG human GBM cells. Importantly, administration of mimics of these miRNAs with sunitinib or axitinib resulted in decreased tumour cell proliferation and enhanced cell death, whereas no significant effect was observed when coupling miRNA modulation with temozolomide, the first-line drug for GBM therapy. Overall, our results provide evidence that combining the 'horizontal' inhibition of signalling pathways promoted by MTKIs with the 'vertical' inhibition of the downstream signalling cascade promoted by hsa-miR-302a-3p and hsa-miR-520 b constitutes a promising approach towards GBM treatment.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioblastoma/genética , Glioblastoma/terapia , MicroARNs/genética , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Terapia Combinada , Predisposición Genética a la Enfermedad , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , MicroARNs/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transfección
12.
Eur J Pharm Biopharm ; 104: 7-18, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27106606

RESUMEN

Glioblastoma (GBM), the highest grade astrocytoma, is one of the most aggressive and challenging cancers to treat. The standard treatment is usually limited due to the intrinsic resistance of GBM to chemotherapy and drug non-specific effects. Therefore, new therapeutic strategies need to be developed to target tumor cells, sparing healthy tissues. In this context, the inhibitor-of-apoptosis protein (IAP) survivin emerges as an ideal target for a gene silencing approach, since it is sharply differentially expressed in cancer tissues. In this work, two different families of cationic gemini surfactants (bis-quat conventional and serine-derived) were tested regarding their efficiency to deliver small interfering RNAs (siRNAs) in a human GBM cell line (U87), in order to select an effective siRNA anti-survivin carrier. Importantly, survivin downregulation combined with administration of the chemotherapeutic agents temozolomide or etoposide resulted in a synergistic cytotoxic effect, thus revealing to be a promising strategy to reduce the chemotherapeutic doses for GBM treatment.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Proteínas Inhibidoras de la Apoptosis/genética , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Regulación hacia Abajo , Silenciador del Gen , Glioblastoma/genética , Humanos , Survivin
13.
Biochim Biophys Acta ; 1860(1 Pt A): 28-35, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26434535

RESUMEN

BACKGROUND: Overexpression of transferrin receptors (TfRs), which are responsible for the intracellular uptake of ferric transferrin (Tf), has been described in various cancers. Although molecular biology methods allow the identification of different types of receptors in cancer cells, they do not provide features about TfRs internalization, quantification and distribution on cell surface. This information can, however, be accessed by fluorescence techniques. In this work, the quantum dots (QDs)' unique properties were explored to strengthen our understanding of TfRs in cancer cells. METHODS: QDs were conjugated to Tf by covalent coupling and QDs-(Tf) bioconjugates were applied to quantify and evaluate the distribution of TfRs in two human glioblastoma cells lines, U87 and DBTRG-05MG, and also in HeLa cells by using flow cytometry and confocal microscopy. RESULTS: HeLa and DBTRG-05MG cells showed practically the same TfR labeling profile by QDs-(Tf), while U87 cells were less labeled by bioconjugates. Furthermore, inhibition studies demonstrated that QDs-(Tf) were able to label cells with high specificity. CONCLUSIONS: HeLa and DBTRG-05MG cells presented a similar and a higher amount of TfR than U87 cells. Moreover, DBTRG-05MG cells are more efficient in recycling the TfR than the other two cells types. GENERAL SIGNIFICANCE: This is the first study about TfRs in human glioblastoma cells using QDs. This new fluorescent tool can contribute to our understanding of the cancer cell biology and can help in the development of new therapies targeting these receptors.


Asunto(s)
Neoplasias Encefálicas/química , Glioblastoma/química , Puntos Cuánticos , Receptores de Transferrina/análisis , Colorantes Fluorescentes , Células HeLa , Humanos , Microscopía Confocal
14.
J Control Release ; 207: 31-9, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25861727

RESUMEN

Malignant brain tumors, including glioblastoma (GBM), are among the most lethal human cancers, due to their tremendous invasive capacity and limited therapeutic options. Despite remarkable advances in cancer theranostics, which resulted in significant improvement of clinical outcomes, GBM relapse is very frequent and patient survival remains under one year. The elucidation of the role of abnormally-expressed miRNAs in different steps of GBM pathogenesis and in tumor resistance to therapy paved the way for the development of new miRNA-based therapeutic approaches targeting this disease, aiming at increasing specific tumor cell killing and, ultimately, cancer eradication. Here, we demonstrate that intravenously-administered chlorotoxin (CTX)-coupled (targeted) stable nucleic acid lipid particle (SNALP)-formulated anti-miR-21 oligonucleotides accumulate preferentially within brain tumors and promote efficient miR-21 silencing, which results in increased mRNA and protein levels of its target RhoB, while showing no signs of systemic immunogenicity. Decreased tumor cell proliferation and tumor size, as well as enhanced apoptosis activation and, to a lesser extent, improvement of animal survival, were also observed in GBM-bearing mice upon systemic delivery of targeted nanoparticle-formulated anti-miR-21 oligonucleotides and exposure to the tyrosine kinase inhibitor sunitinib. Overall, our results provide evidence that CTX-coupled SNALPs are a reliable and efficient system for systemic delivery of anti-miRNA oligonucleotides. Moreover, although further studies are still necessary to demonstrate a therapeutic benefit in a clinical context, our findings suggest that miRNA modulation by the targeted nanoparticles combined with anti-angiogenic chemotherapy may hold promise as an attractive approach towards GBM treatment.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Neoplasias Encefálicas/terapia , Portadores de Fármacos , Glioblastoma/terapia , Indoles/administración & dosificación , MicroARNs/genética , Nanopartículas , Oligonucleótidos Antisentido/genética , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirroles/administración & dosificación , Tratamiento con ARN de Interferencia/métodos , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/metabolismo , Animales , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Química Farmacéutica , Quimioterapia Adyuvante , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Indoles/química , Indoles/metabolismo , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Nanomedicina , Oligonucleótidos Antisentido/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Pirroles/química , Pirroles/metabolismo , Venenos de Escorpión/metabolismo , Sunitinib , Tecnología Farmacéutica/métodos , Factores de Tiempo , Carga Tumoral/efectos de los fármacos , Proteína de Unión al GTP rhoB/genética , Proteína de Unión al GTP rhoB/metabolismo
15.
Mol Pharm ; 12(3): 716-30, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25634573

RESUMEN

Gene delivery targeting mitochondria has the potential to transform the therapeutic landscape of mitochondrial genetic diseases. Taking advantage of the nonuniversal genetic code used by mitochondria, a plasmid DNA construct able to be specifically expressed in these organelles was designed by including a codon, which codes for an amino acid only if read by the mitochondrial ribosomes. In the present work, gemini surfactants were shown to successfully deliver plasmid DNA to mitochondria. Gemini surfactant-based DNA complexes were taken up by cells through a variety of routes, including endocytic pathways, and showed propensity for inducing membrane destabilization under acidic conditions, thus facilitating cytoplasmic release of DNA. Furthermore, the complexes interacted extensively with lipid membrane models mimicking the composition of the mitochondrial membrane, which predicts a favored interaction of the complexes with mitochondria in the intracellular environment. This work unravels new possibilities for gene therapy toward mitochondrial diseases.


Asunto(s)
Técnicas de Transferencia de Gen , Genes Mitocondriales , Compuestos de Amonio Cuaternario , Alquenos/química , Polarización de Fluorescencia , Expresión Génica , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Lípidos de la Membrana/química , Plásmidos/administración & dosificación , Plásmidos/genética , Compuestos de Amonio Cuaternario/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Tensoactivos/química
16.
Int J Nanomedicine ; 9: 3203-17, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25061297

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and mortal cancer, characterized by a set of known mutations, invasive features, and aberrant microRNA expression that have been associated with hallmark malignant properties of PDAC. The lack of effective PDAC treatment options prompted us to investigate whether microRNAs would constitute promising therapeutic targets toward the generation of a gene therapy approach with clinical significance for this disease. In this work, we show that the developed human serum albumin-1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine:cholesterol/anti-microRNA oligonucleotides (+/-) (4/1) nanosystem exhibits the ability to efficiently deliver anti-microRNA oligonucleotides targeting the overexpressed microRNAs miR-21, miR-221, miR-222, and miR-10 in PDCA cells, promoting an almost complete abolishment of microRNA expression. Silencing of these microRNAs resulted in a significant increase in the levels of their targets. Moreover, the combination of microRNA silencing, namely miR-21, with low amounts of the chemotherapeutic drug sunitinib resulted in a strong and synergistic antitumor effect, showing that this combined strategy could be of great importance for therapeutic application in PDAC.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Indoles/farmacología , MicroARNs/genética , Neoplasias Pancreáticas/genética , Pirroles/farmacología , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Terapia Genética/métodos , Humanos , Oligonucleótidos Antisentido/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilcolinas , Sunitinib , Transfección/métodos
17.
Int J Pharm ; 473(1-2): 366-74, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25051113

RESUMEN

Gene therapy is considered a promising approach for the treatment of hepatocellular carcinoma (HCC). In this regard, the main goal of this work was to develop a specific and efficient gene delivery nanosystem to HCC based on 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine:cholesterol cationic liposomes and asialofetuin (ASF), a specific ligand to the asialoglycoprotein receptor (ASGP-R) that is overexpressed in HCC. Our results show that association of ASF to lipoplexes promotes a substantial increase in their biological activity in HCC cells, not only in vitro, but also in an animal model. The transfection activity obtained with this novel nanosystem (ASF-lipoplexes) was much higher than that observed with a highly efficient commercial formulation. On the other hand, the presence of high concentrations of galactose substantially reduced the cell uptake and biological activity of the ASF-lipoplexes. These results, together with those obtained in the presence of inhibitors of endocytosis, show that the potentiation induced by the association of ASF to lipoplexes is due to its specific interaction with the ASGP-R. The physicochemical properties of the generated nanosystem also reinforce this observation. Overall, our results demonstrate for the first time that the novel ASF-lipoplexes present a noticeable ability to specifically and efficiently deliver genetic material into HCC cells.


Asunto(s)
Receptor de Asialoglicoproteína/metabolismo , Asialoglicoproteínas/administración & dosificación , Carcinoma Hepatocelular/metabolismo , ADN/administración & dosificación , Fetuínas/administración & dosificación , Técnicas de Transferencia de Gen , Neoplasias Hepáticas/metabolismo , Colesterol/química , Células HeLa , Células Hep G2 , Humanos , Liposomas , Nanoestructuras , Fosfatidilcolinas/química , Plásmidos
18.
Hum Mol Genet ; 23(23): 6286-301, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24990149

RESUMEN

MicroRNAs (miRNAs) have emerged as a class of small, endogenous, regulatory RNAs that exhibit the ability to epigenetically modulate the translation of mRNAs into proteins. This feature enables them to control cell phenotypes and, consequently, modify cell function in a disease context. The role of inflammatory miRNAs in Alzheimer's disease (AD) and their ability to modulate glia responses are now beginning to be explored. In this study, we propose to disclose the functional role of miR-155, one of the most well studied immune-related miRNAs in AD-associated neuroinflammatory events, employing the 3xTg AD animal model. A strong upregulation of miR-155 levels was observed in the brain of 12-month-old 3xTg AD animals. This event occurred simultaneously with an increase of microglia and astrocyte activation, and before the appearance of extracellular Aß aggregates, suggesting that less complex Aß species, such as Aß oligomers may contribute to early neuroinflammation. In addition, we investigated the contribution of miR-155 and the c-Jun transcription factor to the molecular mechanisms that underlie Aß-mediated activation of glial cells. Our results suggest early miR-155 and c-Jun upregulation in the 3xTg AD mice, as well as in Aß-activated microglia and astrocytes, thus contributing to the production of inflammatory mediators such as IL-6 and IFN-ß. This effect is associated with a miR-155-dependent decrease of suppressor of cytokine signaling 1. Furthermore, since c-Jun silencing decreases the levels of miR-155 in Aß-activated microglia and astrocytes, we propose that miR-155 targeting can constitute an interesting and promising approach to control neuroinflammation in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/patología , Línea Celular , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Regulación hacia Arriba
19.
Mol Pharm ; 11(3): 819-27, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24428614

RESUMEN

Gene knockdown has emerged as an important tool for cancer gene therapy as well as for viral infections and dominantly inherited genetic disorders. The generation of suitable siRNA delivery systems poses some challenges, namely, to avoid nuclease degradation, to surpass the cytoplasmic membrane, and to release the nucleic acids into the cytosol. Aiming at evaluating the ability of thermoresponsive block copolymers formed by units of N-isopropylacrylamide and of (3-acrylamidopropyl)trimethylammonium chloride to efficiently deliver siRNAs, an extensive study was performed with four different copolymers using a human fibrosarcoma cell line as cell model. The silencing ability and cytotoxicity of the generated copolymer-based siRNA delivery systems were found to be dependent on the cloud point of the polymer, which corresponds to the transition temperature at which the aggregation or precipitation of the polymer molecules becomes thermodynamically more favorable than their solubilization. In the present study, a system capable of delivering siRNAs efficiently, specifically and without presenting relevant cytotoxicity, even in the presence of serum, was developed. Confocal fluorescence experiments showed that the ability of the generated systems to silence the target gene is related to some extent to nucleic acid internalization, being also dependent on polymer/siRNA dissociation at 37 °C. Thus, a delicate balance between nucleic acid internalization and intracellular release must be met in order to reach an ideal knockdown efficiency. The special features and potential for manipulation of the N-isopropylacrylamide-based copolymers make them suitable materials for the design and synthesis of new and promising siRNA delivery systems.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Carcinoma de Células Escamosas/radioterapia , Proliferación Celular/efectos de la radiación , Receptores ErbB/antagonistas & inhibidores , Neoplasias de Cabeza y Cuello/radioterapia , Lutecio/uso terapéutico , Radioinmunoterapia , Animales , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/metabolismo , Proliferación Celular/efectos de los fármacos , Cetuximab , Receptores ErbB/inmunología , Femenino , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Lutecio/farmacocinética , Ratones , Ratones Endogámicos BALB C , Panitumumab , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Pharmaceuticals (Basel) ; 6(10): 1195-220, 2013 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-24275848

RESUMEN

The discovery of small RNA molecules with the capacity to regulate messenger RNA (mRNA) stability and translation (and consequently protein synthesis) has revealed an additional level of post-transcriptional gene control. MicroRNAs (miRNAs), an evolutionarily conserved class of small noncoding RNAs that regulate gene expression post-transcriptionally by base pairing to complementary sequences in the 3' untranslated regions of target mRNAs, are part of this modulatory RNA network playing a pivotal role in cell fate. Functional studies indicate that miRNAs are involved in the regulation of almost every biological pathway, while changes in miRNA expression are associated with several human pathologies, including cancer. By targeting oncogenes and tumor suppressors, miRNAs have the ability to modulate key cellular processes that define the cell phenotype, making them highly promising therapeutic targets. Over the last few years, miRNA-based anti-cancer therapeutic approaches have been exploited, either alone or in combination with standard targeted therapies, aiming at enhancing tumor cell killing and, ideally, promoting tumor regression and disease remission. Here we provide an overview on the involvement of miRNAs in cancer pathology, emphasizing the mechanisms of miRNA regulation. Strategies for modulating miRNA expression are presented and illustrated with representative examples of their application in a therapeutic context.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...