Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38313275

RESUMEN

Classical methods of investigating protein-protein interactions (PPIs) are generally performed in non-living systems, yet in recent years new technologies utilizing proximity labeling (PL) have given researchers the tools to explore proximal PPIs in living systems. PL has distinct advantages over traditional protein interactome studies, such as the ability to identify weak and transient interactions in vitro and in vivo. Most PL studies are performed on targets within the cell or on the cell membrane. We have adapted the original PL method to investigate PPIs within the extracellular compartment, using both BioID2 and TurboID, that we term extracellular PL (ePL). To demonstrate the utility of this modified technique, we investigate the interactome of the widely expressed matrisome protein tissue inhibitor of metalloproteinases 2 (TIMP2). Tissue inhibitors of metalloproteinases (TIMPs) are a family of multi-functional proteins that were initially defined by their ability to inhibit the enzymatic activity of metalloproteinases (MPs), the major mediators of extracellular matrix (ECM) breakdown and turnover. TIMP2 exhibits a broad expression profile and is often abundant in both normal and diseased tissues. Understanding the functional transformation of matrisome regulators, like TIMP2, during the evolution of tissue microenvironments associated with disease progression is essential for the development of ECM-targeted therapeutics. Using carboxyl- and amino-terminal fusion proteins of TIMP2 with BioID2 and TurboID, we describe the TIMP2 proximal interactome. We also illustrate how the TIMP2 interactome changes in the presence of different stimuli, in different cell types, in unique culture conditions (2D vs 3D), and with different reaction kinetics (BioID2 vs. TurboID); demonstrating the power of this technique versus classical PPI methods. We propose that the screening of matrisome targets in disease models using ePL will reveal new therapeutic targets for further comprehensive studies.

2.
Am J Physiol Cell Physiol ; 326(3): C917-C934, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284123

RESUMEN

The tissue inhibitors of matrix metalloproteinases (TIMPs) are a family of four matrisome proteins classically defined by their roles as the primary endogenous inhibitors of metalloproteinases (MPs). Their functions however are not limited to MP inhibition, with each family member harboring numerous MP-independent biological functions that play key roles in processes such as inflammation and apoptosis. Because of these multifaceted functions, TIMPs have been cited in diverse pathophysiological contexts. Herein, we provide a comprehensive overview of the MP-dependent and -independent roles of TIMPs across a range of pathological conditions. The potential therapeutic and biomarker applications of TIMPs in these disease contexts are also considered, highlighting the biomedical promise of this complex and often misunderstood protein family.


Asunto(s)
Metaloproteinasas de la Matriz , Inhibidores Tisulares de Metaloproteinasas , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Matriz Extracelular/metabolismo
3.
Matrix Biol ; 123: 59-70, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804930

RESUMEN

Extracellular proteolysis and turnover are core processes of tissue homeostasis. The predominant matrix-degrading enzymes are members of the Matrix Metalloproteinase (MMP) family. MMPs extensively degrade core matrix components in addition to processing a range of other factors in the extracellular, plasma membrane, and intracellular compartments. The proteolytic activity of MMPs is modulated by the Tissue Inhibitors of Metalloproteinases (TIMPs), a family of four multi-functional matrisome proteins with extensively characterized MMP inhibitory functions. Thus, a well-regulated balance between MMP activity and TIMP levels has been described as critical for healthy tissue homeostasis, and this balance can be chronically disturbed in pathological processes. The relationship between MMPs and TIMPs is complex and lacks the constraints of a typical enzyme-inhibitor relationship due to secondary interactions between various MMPs (specifically gelatinases) and TIMP family members. We illustrate a new complexity in this system by describing how MMP9 can cleave members of the TIMP family when in molar excess. Proteolytic processing of TIMPs can generate functionally altered peptides with potentially novel attributes. We demonstrate here that all TIMPs are cleaved at their C-terminal tails by a molar excess of MMP9. This processing removes the N-glycosylation site for TIMP3 and prevents the TIMP2 interaction with latent proMMP2, a prerequisite for cell surface MMP14-mediated activation of proMMP2. TIMP2/4 are further cleaved producing ∼14 kDa N-terminal proteins linked to a smaller C-terminal domain through residual disulfide bridges. These cleaved TIMP2/4 complexes show perturbed MMP inhibitory activity, illustrating that MMP9 may bear a particularly prominent influence upon the TIMP:MMP balance in tissues.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Inhibidores Tisulares de Metaloproteinasas , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Proteolisis , Inhibidores Tisulares de Metaloproteinasas/genética , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Gelatinasas/metabolismo , Proteínas/metabolismo
4.
Matrix Biol Plus ; 18: 100132, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37095886

RESUMEN

Tissue inhibitor of metalloproteinases (TIMPs/Timps) are an endogenous family of widely expressed matrisome-associated proteins that were initially identified as inhibitors of matrix metalloproteinase activity (Metzincin family proteases). Consequently, TIMPs are often considered simply as protease inhibitors by many investigators. However, an evolving list of new metalloproteinase-independent functions for TIMP family members suggests that this concept is outdated. These novel TIMP functions include direct agonism/antagonism of multiple transmembrane receptors, as well as functional interactions with matrisome targets. While the family was fully identified over two decades ago, there has yet to be an in-depth study describing the expression of TIMPs in normal tissues of adult mammals. An understanding of the tissues and cell-types that express TIMPs 1 through 4, in both normal and disease states are important to contextualize the growing functional capabilities of TIMP proteins, which are often dismissed as non-canonical. Using publicly available single cell RNA sequencing data from the Tabula Muris Consortium, we analyzed approximately 100,000 murine cells across eighteen tissues from non-diseased organs, representing seventy-three annotated cell types, to define the diversity in Timp gene expression across healthy tissues. We describe the unique expression profiles across tissues and organ-specific cell types that all four Timp genes display. Within annotated cell-types, we identify clear and discrete cluster-specific patterns of Timp expression, particularly in cells of stromal and endothelial origins. RNA in-situ hybridization across four organs expands on the scRNA sequencing analysis, revealing novel compartments associated with individual Timp expression. These analyses emphasize a need for specific studies investigating the functional significance of Timp expression in the identified tissues and cell sub-types. This understanding of the tissues, specific cell types and microenvironment conditions in which Timp genes are expressed adds important physiological context to the growing array of novel functions for TIMP proteins.

5.
bioRxiv ; 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38234759

RESUMEN

Mounting evidence suggests that the tissue inhibitor of metalloproteinases-2 (TIMP2) can reduce tumor burden and metastasis. However, the demonstration of such anti-tumor activity and associated mechanisms using in vivo tumor models is lacking. The effects of a Timp2 functional mutation and administration of recombinant TIMP2 were examined in both orthotopic and heterotopic murine models of lung cancer using C57Bl/6 syngeneic Lewis Lung 2-luciferase 2 cells (LL2-luc2) cells. Mice harboring a functional mutation of TIMP2 (mT2) display markedly increased primary lung tumor growth, increased mortality, enriched vasculature, and enhanced infiltration of pro-tumorigenic, immunosuppressive myeloid cells. Treatment with recombinant TIMP2 reduced primary tumor growth in both mutant and wild-type (wt) mice. Comparison of transcriptional profiles of lung tissues from tumor-free, wt versus mT2 mice reveals only minor changes. However, lung tumor-bearing mice of both genotypes demonstrate significant genotype-dependent changes in gene expression following treatment with TIMP. In tumor-bearing wt mice, TIMP2 treatment reduced the expression of upstream oncogenic mediators, whereas treatment of mT2 mice resulted in an immunomodulatory phenotype. A heterotopic subcutaneous model generating metastatic pulmonary tumors demonstrated that daily administration of recombinant TIMP2 significantly downregulates the expression of heat shock proteins, suggesting a reduction of cell-stress responses. In summary, we describe how TIMP2 exerts novel, anti-tumor effects in a murine model of lung cancer and that rTIMP2 treatment supports a normalizing effect on the tumor microenvironment. Our findings show that TIMP2 treatment demonstrates significant potential as an adjuvant in the treatment of NSCLC.

6.
Carcinogenesis ; 43(5): 405-418, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35436325

RESUMEN

Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity. As our understanding of TIMP biology has evolved, distinct roles have been assigned to individual TIMPs in cancer progression. In this respect, data regarding TIMP2's role in cancer have borne conflicting reports of both tumor suppressor and, to a lesser extent, tumor promoter functions. TIMP2 is the most abundant TIMP family member, prevalent in normal and diseased mammalian tissues as a constitutively expressed protein. Despite its apparent stable expression, recent work highlights how TIMP2 is a cell stress-induced gene product and that its biological activity can be dictated by extracellular posttranslational modifications. Hence an understanding of TIMP2 molecular targets, and how its biological functions evolve in the progressing tumor microenvironment may reveal new therapeutic opportunities. In this review, we discuss the continually evolving functions of TIMP proteins, future perspectives in TIMP research, and the therapeutic utility of this family, with a particular focus on TIMP2.


Asunto(s)
Neoplasias , Inhibidores Tisulares de Metaloproteinasas , Animales , Matriz Extracelular/metabolismo , Mamíferos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteolisis , Inhibidores Tisulares de Metaloproteinasas/genética , Microambiente Tumoral/genética
7.
Biochemistry ; 59(32): 2922-2933, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32702237

RESUMEN

Matrix metalloprotease (MMP) activation contributes to the degradation of the extracellular matrix (ECM), resulting in a multitude of pathologies. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifaceted endocytic and signaling receptor that is responsible for internalization and lysosomal degradation of diverse proteases, protease inhibitors, and lipoproteins along with numerous other proteins. In this study, we identified MMP-1 as a novel LRP1 ligand. Binding studies employing surface plasmon resonance revealed that both proMMP-1 and active MMP-1 bind to purified LRP1 with equilibrium dissociation constants (KD) of 19 and 25 nM, respectively. We observed that human aortic smooth muscle cells readily internalize and degrade 125I-labeled proMMP-1 in an LRP1-mediated process. Our binding data also revealed that all tissue inhibitors of metalloproteases (TIMPs) bind to LRP1 with KD values ranging from 23 to 33 nM. Interestingly, the MMP-1/TIMP-1 complex bound to LRP1 with an affinity (KD = 0.6 nM) that was 30-fold higher than that of either component alone, revealing that LRP1 prefers the protease:inhibitor complex as a ligand. Of note, modification of lysine residues on either proMMP-1 or TIMP-1 ablated the ability of the MMP-1/TIMP-1 complex to bind to LRP1. LRP1's preferential binding to enzyme:inhibitor complexes was further supported by the higher binding affinity for proMMP-9/TIMP-1 complexes than for either of these two components alone. LRP1 has four clusters of ligand-binding repeats, and MMP-1, TIMP-1, and MMP-1/TIMP-1 complexes bound to cluster III most avidly. Our results reveal an important role for LRP1 in controlling ECM homeostasis by regulating MMP-1 and MMP-9 levels.


Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Animales , Aorta/citología , Línea Celular , Endocitosis , Activación Enzimática , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Miocitos del Músculo Liso/metabolismo , Unión Proteica
8.
Carcinogenesis ; 41(3): 313-325, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31621840

RESUMEN

Metastasis is the primary cause of treatment failures and mortality in most cancers. Triple-negative breast cancer (TNBC) is refractory to treatment and rapidly progresses to disseminated disease. We utilized an orthotopic mouse model that molecularly and phenotypically resembles human TNBC to study the effects of exogenous, daily tissue inhibitor of metalloproteinase-2 (TIMP-2) treatment on tumor growth and metastasis. Our results demonstrated that TIMP-2 treatment maximally suppressed primary tumor growth by ~36-50% and pulmonary metastasis by >92%. Immunostaining assays confirmed disruption of the epithelial to mesenchymal transition (EMT) and promotion of vascular integrity in primary tumor tissues. Immunostaining and RNA sequencing analysis of lung tissue lysates from tumor-bearing mice identified significant changes associated with metastatic colony formation. Specifically, TIMP-2 treatment disrupts periostin localization and critical cell-signaling pathways, including canonical Wnt signaling involved in EMT, as well as PI3K signaling, which modulates proliferative and metastatic behavior through p27 phosphorylation/localization. In conclusion, our study provides evidence in support of a role for TIMP-2 in suppression of triple-negative breast cancer growth and metastasis through modulation of the epithelial to mesenchymal transition, vascular normalization, and signaling pathways associated with metastatic outgrowth. Our findings suggest that TIMP-2, a constituent of the extracellular matrix in normal tissues, may have both direct and systemic antitumor and metastasis suppressor effects, suggesting potential utility in the clinical management of breast cancer progression.


Asunto(s)
Carcinogénesis/genética , Proliferación Celular/genética , Inhibidor Tisular de Metaloproteinasa-2/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Metástasis de la Neoplasia , Fosfatidilinositol 3-Quinasas , Análisis de Secuencia de ARN , Neoplasias de la Mama Triple Negativas/patología , Vía de Señalización Wnt/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Sci Rep ; 9(1): 20142, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882975

RESUMEN

Remodeling of the extracellular matrix (ECM) to facilitate invasion and metastasis is a universal hallmark of cancer progression. However, a definitive therapeutic target remains to be identified in this tissue compartment. As major modulators of ECM structure and function, matrix metalloproteinases (MMPs) are highly expressed in cancer and have been shown to support tumor progression. MMP enzymatic activity is inhibited by the tissue inhibitor of metalloproteinase (TIMP1-4) family of proteins, suggesting that TIMPs may possess anti-tumor activity. TIMP2 is a promiscuous MMP inhibitor that is ubiquitously expressed in normal tissues. In this study, we address inconsistencies in the literature regarding the role of TIMP2 in tumor progression by analyzing co-expressed genes in tumor vs. normal tissue. Utilizing data from The Cancer Genome Atlas and Genotype-Tissue expression studies, focusing on breast and lung carcinomas, we analyzed the correlation between TIMP2 expression and the transcriptome to identify a list of genes whose expression is highly correlated with TIMP2 in tumor tissues. Bioinformatic analysis of the identified gene list highlights a core of matrix and matrix-associated genes that are of interest as potential modulators of TIMP2 function, thus ECM structure, identifying potential tumor microenvironment biomarkers and/or therapeutic targets for further study.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Metaloproteinasas de la Matriz/genética , Neoplasias/genética , Inhibidores Tisulares de Metaloproteinasas/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Metaloproteinasas de la Matriz/metabolismo , Neoplasias/metabolismo , Filogenia , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Transcriptoma
10.
iScience ; 4: 84-96, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30240756

RESUMEN

Many xenobiotics can bind to off-target receptors and cause toxicity via the dysregulation of downstream transcription factors. Identification of subsequent off-target toxicity in these chemicals has often required extensive chemical testing in animal models. An alternative, integrated in vitro/in silico approach for predicting toxic off-target functional responses is presented to refine in vitro receptor identification and reduce the burden on in vivo testing. As part of the methodology, mathematical modeling is used to mechanistically describe processes that regulate transcriptional activity following receptor-ligand binding informed by transcription factor signaling assays. Critical reactions in the signaling cascade are identified to highlight potential perturbation points in the biochemical network that can guide and optimize additional in vitro testing. A physiologically based pharmacokinetic model provides information on the timing and localization of different levels of receptor activation informing whole-body toxic potential resulting from off-target binding.

11.
J Affect Disord ; 172: 63-73, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25451397

RESUMEN

BACKGROUND: The purpose of this study was to address the affects of mood modifying drugs on the transcriptome, in a tissue culture model, using qPCR arrays as a cost effective approach to identifying regulatory networks and pathways that might coordinate the cell response to a specific drug. METHODS: We addressed the gene expression profile of 90 plus genes associated with human mood disorders using the StellARray™ qPCR gene expression system in the human derived SH-SY5Y neuroblastoma cell line. RESULTS: Global Pattern Recognition (GPR) analysis identified a total of 9 genes (DRD3(⁎), FOS(†), JUN(⁎), GAD1(⁎†), NRG1(⁎), PAFAH1B3(⁎), PER3(⁎), RELN(⁎) and RGS4(⁎)) to be significantly regulated in response to cellular challenge with the mood stabilisers sodium valproate ((⁎)) and lithium ((†)). Modulation of FOS and JUN highlights the importance of the activator protein 1 (AP-1) transcription factor pathway in the cell response. Enrichment analysis of transcriptional networks relating to this gene set also identified the transcription factor neuron restrictive silencing factor (NRSF) and the oestrogen receptor as an important regulatory mechanism. LIMITATIONS: Cell line models offer a window of what might happen in vivo but have the benefit of being human derived and homogenous with regard to cell type. CONCLUSIONS: This data highlights transcription factor pathways, acting synergistically or separately, in the modulation of specific neuronal gene networks in response to mood stabilising drugs. This model can be utilised in the comparison of the action of multiple drug regimes or for initial screening purposes to inform optimal drug design.


Asunto(s)
Antimaníacos/farmacología , Proteínas Represoras/genética , Transcriptoma , Línea Celular , Humanos , Compuestos de Litio/farmacología , Proteína Reelina , Ácido Valproico/farmacología
12.
PLoS One ; 9(7): e104877, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25127029

RESUMEN

Stromal cells such as myofibroblasts influence tumor progression. The mechanisms are unclear but may involve effects on both tumor cells and recruitment of bone marrow-derived mesenchymal stromal cells (MSCs) which then colonize tumors. Using iTRAQ and LC-MS/MS we identified the adipokine, chemerin, as overexpressed in esophageal squamous cancer associated myofibroblasts (CAMs) compared with adjacent tissue myofibroblasts (ATMs). The chemerin receptor, ChemR23, is expressed by MSCs. Conditioned media (CM) from CAMs significantly increased MSC cell migration compared to ATM-CM; the action of CAM-CM was significantly reduced by chemerin-neutralising antibody, pretreatment of CAMs with chemerin siRNA, pretreatment of MSCs with ChemR23 siRNA, and by a ChemR23 receptor antagonist, CCX832. Stimulation of MSCs by chemerin increased phosphorylation of p42/44, p38 and JNK-II kinases and inhibitors of these kinases and PKC reversed chemerin-stimulated MSC migration. Chemerin stimulation of MSCs also induced expression and secretion of macrophage inhibitory factor (MIF) that tended to restrict migratory responses to low concentrations of chemerin but not higher concentrations. In a xenograft model consisting of OE21 esophageal cancer cells and CAMs, homing of MSCs administered i.v. was inhibited by CCX832. Thus, chemerin secreted from esophageal cancer myofibroblasts is a potential chemoattractant for MSCs and its inhibition may delay tumor progression.


Asunto(s)
Quimiocinas/metabolismo , Neoplasias Esofágicas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Madre Mesenquimatosas/fisiología , Miofibroblastos/metabolismo , Animales , Línea Celular Tumoral , Quimiotaxis , Neoplasias Esofágicas/patología , Humanos , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Trasplante de Neoplasias , Proteína Quinasa C/metabolismo , Receptores de Quimiocina/metabolismo , Migración Transendotelial y Transepitelial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...